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Abstract

Single-address-space operating systems have well-known
lightweightness benefits that result from their central de-
sign idea: the kernel and applications share a unique address
space. This model makes these operating systems (OSes)
incompatible by design with a large class of software: mul-
tiprocess POSIX applications. Indeed, the semantics of the
primitive used to create POSIX processes, fork, are inextri-
cably tied to the existence of multiple address spaces.

Prior approaches addressing this issue trade off light-
weightness, compatibility and/or isolation. We propose pFork,
a single-address-space operating system design supporting
POSIX fork on modern hardware without compromising
on any of these key objectives. pFork emulates POSIX pro-
cesses (pprocesses) and achieves fork by creating for the
child a copy of the parent pprocess’ memory at a differ-
ent location within a single address space. This approach
presents two challenges: relocating the child’s absolute mem-
ory references (pointers), as well as providing user/kernel
and pprocesses isolation without impacting lightweightness.
We address them using CHERI. We implement pFork and
evaluate it upon three real-world use-cases: Redis snapshots,
Nginx multi-worker deployments, and Zygote FaaS worker
warm-up. pFork outperforms previous work and traditional
monolithic OSes on key lightweightness metrics by an order
of magnitude, e.g. it can offer a fork-bound Faa$S function
throughput 24% higher than that of a monolithic OS, and can
fork a pprocess in 54 ps, 3.7x faster than a traditional fork.

CCS Concepts: « Security and privacy — Operating sys-
tems security; « Software and its engineering — Operat-
ing systems.
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1 Introduction

A single-address-space operating system (SASOS) colocates
the OS kernel together with all user programs within a sin-
gle address space to achieve lightweightness benefits: perfor-
mance improvements through optimized context switches
and swift security domain transitions, as well as low memory
footprint, among others. Early SASOSes such as Opal [46]
and Mungi [39] leveraged this design to ease communication
and coordination across processes. More recently, the rise of
virtualization has enabled customizable SASOSes which sim-
plify or completely eliminate barriers between user and ker-
nel code [48, 71], to achieve large performance and resource
usage improvements. Due to their lightweight characteris-
tics, SASOSes are growing in popularity in many areas where
high performance and low resource consumption is required,
including Function as a Service (FaaS) [20, 34, 111], edge
computing [26, 73, 114] and confidential computing [51].

Still, despite this growing popularity, SASOSes struggle to
find mainstream adoption. A key obstacle to their widespread
deployment is their lack of support for a wide range of software:
multiprocess POSIX applications 1 [21, 50, 82, 109, 130]. These
applications rely on the primary process creation mecha-
nism in POSIX systems, fork. fork is an old and ubiquitous
mechanism that creates a new (child) process by copying
the memory and system resources of the calling process
(parent). Many popular applications such as OpenSSH [85],
Redis [87], Nginx [76], Apache httpd [107] and Qmail [15]
are designed to take advantage of fork for purposes such as
concurrency, isolation, and on-demand resource duplication.
Unfortunately, the semantics of fork make it fundamentally
hard to support in a SASOS: with fork, each child process is
created in a new address space, whereas a true SASOS can
only have, by definition, a single one.

An ideal approach to support fork within SASOSes should
accomplish all the following objectives. First, fork support
must not compromise the lightweightness of SASOSes. In
particular, it should not re-introduce multiple address spaces,
since a single address space is critical to the performance ad-
vantages which have been exploited for fast IPC [18, 112] and
I/0O [14], among others. Second, the inter-process isolation
properties obtained with traditional fork, confining each
process within its own address space, must be preserved in a
single-address-space implementation. SASOS fork support

'We use the POSIX definition of process, which implies a separate address
space. However, we note that the term “process” long predates POSIX.
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must also be transparent for applications, i.e. it must ex-
hibit the same semantics as traditional fork. Finally, SASOS
fork must also perform at least as well as traditional fork,
exhibiting the same memory usage and performance (e.g.
copy-on-write) characteristics as typical POSIX OSes.

Over the past decades, several solutions to this problem
have been proposed, yet all trade off on at least one of the
aforementioned key objectives. In the 1990s, early SASOSes
used segment-relative addressing to fork processes [39, 121],
avoiding the need for relocations by making all memory ac-
cesses relative to a base register. However, segment-relative
addressing is poorly supported in modern toolchains and
ISAs, and bringing it back would imply significant modifica-
tions to a large amount of systems software including com-
pilers, JIT runtimes, or handwritten assembly code. Other
efforts abandon isolation [83], which raises security concerns.
Yet others abandon transparency by manually porting ap-
plications to avoid calling fork [81], something that cannot
be done with most fork use cases without a significant per-
application engineering effort. Other attempts have lever-
aged virtualization hardware to duplicate the entire OS and
application [69, 109, 130], which sacrifices lightweightness
by introducing multiple address spaces.

We present the design and implementation of pFork to ad-
dress the need for efficient fork support within a SASOS. Un-
like existing approaches, pFork is a true single-address-space
solution which does not compromise on lightweightness,
isolation, transparency, or performance. In essence, pFork
emulates POSIX processes (uprocesses) and supports POSIX
fork by copying the memory used by a parent pprocess to
a different location within a single address space, for use by
the child pprocess. This approach leads to two challenges: 1)
identifying in the child absolute memory references point-
ing to the parent’s area, and relocating them to the child’s;
and 2) enforcing isolation between pprocesses, as well as be-
tween pprocesses and the kernel, without compromising on
lightweightness. To solve these challenges, we leverage two
modern technologies: hardware memory tagging to identify
and relocate absolute memory references to the correct loca-
tion within the child’s area, and intra-address-space memory
protection to enforce isolation across pprocesses and the OS
kernel. Building on this, pFork proposes novel optimized
copy-on-write strategies.

We implement a prototype of pFork using CHERI [120,
124] on the ARM Morello platform [8] using as a basis the
Unikraft SASOS [48]. CHERI’s tagged memory allows us to
relocate absolute memory references, and its tightly bounded
hardware memory capabilities let us enforce isolation across
pprocesses and the OS kernel. We evaluate our pFork proto-
type on microbenchmarks and real-world, unmodified, fork-
based applications: Redis snapshots, Nginx multi-worker
deployments, and a MicroPython-based serverless comput-
ing framework warming up Zygote [78] workers. This lets us
showcase key metrics such as fork latency, memory usage,
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and overall application performance. We compare pFork to
a classical POSIX fork on a CHERI-enabled FreeBSD, and a
unikernel fork implementation leveraging virtual machines
(VMs), Nephele [69]. We show that pFork outperforms these
approaches by an order of magnitude on key metrics: pFork
can fork a pprocess in 54 ps, 3.7x faster than a traditional
fork on FreeBSD, and 198x faster than Nephele’s VM-based
approach, while reducing the memory usage by respectively
2.2x and 12.3x.
Overall, this paper contributes:

+ An analysis and breakdown of the problem of supporting
fork in SASOSes, along with a systematic perspective
on prior attempts (§2 and §3).

» The design of pFork, a novel approach to implement fork
in SASOSes, which relies on recent advances in hardware-
based isolation technologies (§3).

« The open-source implementation (§4) and evaluation (§5)
of yFork with CHERI and Unikraft.

2 Background

In this section we examine the use of fork in modern soft-
ware. Based on this, we discuss the lack of fork support
in SASOSes, and its impact. We then contextualize existing
attempts to support fork in SASOSes, and position our pro-
posed contribution, pFork. Finally, we provide background
on CHERI, which we use to implement pFork.

2.1 fork: A Pervasive Software Design Primitive

fork is the oldest process creation mechanism in POSIX
operating systems, tracing its roots back to Project Genie
in the 1960s [77]. When a process calls fork, the OS kernel
creates a copy of the process’ memory, state, and system
resources such as sockets and open file descriptors into a
new isolated address space. The newly created process is
referred to as the child, and the fork caller as the parent.
Although conceptually simple, real-world POSIX fork comes
with optimizations such as copy-on-write, and many features
which allow customization of its copying and protection
behavior [13]. Most importantly, the semantics of fork imply
that it is responsible for both creating new processes and
creating new address spaces. This makes fork a mechanism
that imposes strong constraints on OS design [13], and makes
it fundamentally difficult to implement in SASOSes which
have, by definition, only one address space.

Still, fork remains a very popular software design primi-
tive, whose uses typically match the following patterns:

(U1) fork + exec to start a new program. Examples in-
clude running an executable via Bash.

(U2) fork for concurrency. Web servers such as Nginx [76]
and Apache [107] use fork to create additional worker
processes that handle requests concurrently.
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(U3) fork for privilege separation. Privilege-separated
software such as OpenSSH [85] and qmail [15] leverage
fork to isolate trusted and untrusted application parts.

(U4) fork to leverage copy-on-write. The Redis [87] key-
value store uses fork to create an instant snapshot of
an in-memory database with copy-on-write and saves
it to the disk, concurrently with the main database
process that continues to handle requests.

(U5) fork to reduce startup times. Testing frameworks
such as fuzzers use fork to avoid the cost of setup for
each exploration [1, 40, 63, 74, 128] and improve effi-
ciency. Latency-sensitive applications such as Function
as a Service (FaaS) use fork to quickly start function
instances [6]. Android applications are started through
fork called by a root Zygote process [38].

(U6) fork to daemonize. By leveraging concurrency, ap-
plications such as web servers can create detached
processes which run independently in the background.

Applications may also use a combination of all, showing
how fork is vital to run popular applications. We found that
the 46% of the 50 most popular C repositories on GitHub
and 50% of 50 most popular Debian packages reported by
popcon [9], use fork.

2.2 Single-Address-Space Operating Systems

Single-address-space operating systems were first proposed
in the early 1990s, enabled by the spread of 64-bit processors
which made it possible to colocate the kernel and all appli-
cations within a single address space [22, 46, 88]. Initially,
SASOSes were introduced to simplify data sharing and com-
munication across processes, since each has the same flat
view of memory. Additionally, SASOSes removed some of the
overhead of address translation through using a unique map-
ping of virtual to physical addresses [39, 46]. Over the years,
many different types of SASOSes have been explored includ-
ing exokernels [30] which simplify OS abstractions by allow-
ing applications to manage resources to suit their needs, sin-
gle level store OSes [56] which enable all data to be addressed
directly by applications, dataplane OSes [14] which simplify
I/O operations, software-isolated OSes [19, 41] which lever-
age type and memory safety to reduce process isolation over-
heads, and unikernels [47, 48, 52, 71, 80, 89] which remove
barriers between user and kernel and execute all code at the
same privilege level to speed up system calls.

Despite this diversity of designs, all SASOSes aim to im-
prove lightweightness, i.e. the high performance and low
resource consumption benefits stemming from the minimal-
ist nature of this OS model. These benefits include in particu-
lar fast IPCs, low-latency security domain switches (context
switches across processes, user/kernel transitions), and low
memory footprint. They are obtained through the concise
and specialized designs of SASOSes. The primary means for
achieving this lightweightness is through the single address
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Table 1. Comparison of pFork with other SASOS fork sys-
tems. SAS = Single Address Space; SC = Self-Contained (no
infrastructure changes required); Seg = Segment-relative;
f+e = fork + exec.

System SAS | Isolation | SC | IPCs | Seg | f+e only
Angel [121] Yes Yes Yes | Fast | Yes No
Mungi [39] Yes Yes Yes | Fast | Yes No
Nephele [69] No Yes No | Med | No No
KylinX [130] No Yes No | Med | No No

Graphene [109] No Yes No | Med | No No
Graphene SGX [110] | No Yes No | Slow | No No
Iso-Unik [57] No Yes Yes | Med | No No
OSv [45] Yes No Yes | Fast | No Yes
Junction [35] Yes No No | Med | No Yes
This work: pFork Yes Yes Yes | Fast | No No

space, removing the need for page table switches and the
associated costly hardware cache flushes [5] which result
from context switches on multi-address-space OSes.
Although SASOSes are gaining traction in domains such
as cloud computing [111] and confidential computing [29,
51, 72], a key obstacle to their widespread deployment is
their inability to efficiently support multiprocess applications
using POSIX fork [22], which limits their compatibility with
many popular applications (e.g., 50% of the 50 most popular
Debian packages). We address this shortcoming with pFork.

2.3 Existing Approaches to fork in SASOSes

Over the past decades, several solutions have been proposed
to support fork in SASOSes. We categorize them in Table 1.

Pioneer SASOSes and Segment-Relative Addressing.
Early SASOSes such as Angel [121] and Mungi [39] leveraged
segment-relative addressing to implement fork to avoid the
need for relocations upon fork, all the while maintaining
a single address space and thus fast IPC. Segment-relative
addressing requires that all memory references are relative
to a base register. However, modern compiler support for
segment-relative addressing cannot handle the entirety of
absolute memory references that would need relocation fol-
lowing fork. These references are pointers that live not only
as globals in static memory but also on the stack/heap, and
modern toolchains cannot generate code dereferencing a
pointer loaded e.g. from the stack relatively to a register.
This means that extensive and complex compiler modifica-
tions would be required to implement such an approach on
a modern system. In addition, a large amount of systems
software including handwritten assembly or JIT runtimes
would further need to be adapted to work with relative ad-
dressing. Modern hardware support for segment-relative
addressing, such as with x86-64’s fs/gs registers, also does
not provide adequate support for all of the possible mem-
ory references without significant compiler and toolchain
modifications. Overall, the risks associated with the complex-
ity of combining segment-relative addressing with the need
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for non-negligible systems software modifications make us
choose alternative approaches for pFork.

Modern SASOSes and fork + exec Support. Certain oc-
currences of this pattern (U1) can be replaced with more
modern and efficient mechanisms, such as vfork + exec or
spawn. These are easily supported in SASOSes [83, 97] by
loading the newly-started program (compiled with position
independent code) at a free location of the address space. This
approach only works with a subset of use cases where the
parent’s duplicated state is not accessed by the child between
fork and exec. Some of these works also do not implement
any form of isolation between applications [35, 45], which
is not acceptable from a security standpoint.

Modern SASOSes and the OS as a Process. Nephele [69]
and KylinX [130, 131] both support fork by treating the en-
tire SASOS as a process and thus implement fork in the
hypervisor. The result is a fork that copies the entire OS
similarly to how a standard POSIX fork copies a process.
Similarly, Graphene [109] and Graphene-SGX [110] both
approach the libOS as a process, and support fork by piggy-
backing it through the host’s fork. These ‘OS-as-a-process’
approaches come with limitations. First, they re-introduce
multiple address spaces and lose the SASOSes lightweight-
ness benefits which come from having a single address space.
Second, this approach is not self-contained: it requires the
SASOS to run under a host (such as a hypervisor, or another
OS) which itself must implement a form of fork.

Modern SASOSes and Page-Tables. Iso-Unik [57] takes
a different approach, implementing fork within the SASOS.
However, it does so by retrofitting multiple address spaces
back into a SASOS, which similarly hurts lightweightness.

Summary. None of these solutions both preserves the
goal of SASOS lightweightness whilst ensuring isolation. Al-
though segment-relative addressing was used in the past,
the reality is that in modern systems, complex modifications
must be made to compilers and toolchains as well as engi-
neering work to port handwritten assembly and JIT com-
pilers. Modern solutions lose the benefits of being a true
single address space which is vital for benefits including fast
IPC [18, 112] and I/O [14]. This motivates for a new approach
that addresses these shortcomings.

2.4 CHERI

Capability Hardware Enhanced RISC Instructions [120, 124]
(CHERI) extends RISC ISAs with safety features including,
among others, memory tagging and intra-address-space iso-
lation. That isolation is achieved through hardware capabili-
ties where each pointer used by a program is extended from
64-bits to 128-bits, with the additional bits used to embed
the bounds and access permissions of the data structure it
points to. These bounds and permissions are checked and
enforced at runtime by the hardware when the pointer is
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dereferenced and the bounds and permissions can only be
decreased and can never be increased. Each pointer present
in memory is marked as such with an unforgeable, single-bit
validity tag stored separately in dedicated memory, which is
cleared automatically upon any illegitimate attempt to mod-
ify the pointer or its permissions: a pointer dereference can
only succeed at runtime if the corresponding tag is valid. Be-
yond its security applications, the tag also allows easy pointer
tracking in memory at runtime [32, 84]: a valid pointer has
its associated bit set which can be easily queried.

CHERI has been implemented on ARM64, RISC-V, and
MIPS. Several hardware implementations are available, in-
cluding Arm’s Morello development board [8], SCI’s CHERIoT
RISC-V devices [91], and Codasip’s X730 RISC-V core [25].

3 Design of pFork

The overarching design goal of pFork is to transparently
support all of POSIX fork’s semantics within a (truly) sin-
gle address space on modern hardware, without losing the
lightweightness benefits of SASOSes. Next, we set out design
requirements and discuss the challenges that arise from them.
We then detail our approach to address these challenges.

3.1 Design Requirements

(R1) Lightweight fork. The guiding benefit of SASOSes,
lightweightness, must be maintained, ensuring high sys-
tem performance, i.e. fast IPC and context/security domain
switches (across processes and user/kernel), as well as a
low per-process memory overhead. This implies that pFork
must not re-introduce multiple address spaces which require
costly hardware flushes and context switches, or require
costly traps during context switches. pFork itself must also
have a low latency (the time taken to fork a process),

(R2) Transparent implementation and compatibility.
The differences between a strict POSIX fork implementation
and pFork must not be visible to the application, i.e. using
pFork must not require application changes. The system’s
behavior upon and following a call to pFork (process state
duplication) must also be equivalent to that of fork from
both the parent and child perspectives.

(R3) Strong isolation. pFork must enforce the same level
of isolation across pprocesses, and between pprocesses and
the kernel, as enforced by POSIX processes: pprocesses can-
not access the kernel/each other’s memory, and can invoke
the kernel only through system calls.

(R4) Flexibility to different SASOS use-cases. As dis-
cussed in §2.2, SASOSes are a diverse class of OSes with
different designs and goals. To fit this diversity, pFork should
minimize the engineering effort required to implement its
design in an existing OS. Integrating pFork should not com-
promise on the target OS key design aims e.g., it should be
possible to disable isolation if a use-case does not require it.
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3.2 Design Approach and Challenges

At a high level, pFork emulates POSIX processes (uprocesses),
and upon a call to fork, copies the memory used by the
parent pprocess to a different location within a unique ad-
dress space, for use by the child pprocess. This approach,
combined with (R1) - (R4), leads to two key challenges:

(C1) Memory Reference Relocation. In a traditional fork
implementation, which relies on creating a copy of the page
table used by the calling process, the address space of the
forked child is identical to that of its parent. However, when
forking in a single address space, the child’s memory must
reside at a different location in the same virtual address space
as the parent. We assume the use of position independent
code, hence the vast majority of memory references will be
relative to the stack, base, or instruction pointers. However,
to satisfy (R2) and (R3), we must relocate absolute memory
references: these are memory references (pointers) located in
the child’s memory which still refer to parent memory after
the copy. They must be relocated to refer to child memory
after the fork, to ensure isolation and equivalent behavior.
Identifying such references at runtime (pointer tracking) is
a hard problem [67], as regular integers can be misidentified
as memory references [115].

(C2) Process Isolation. POSIX processes are isolated by
virtue of residing in different address spaces. Thus, to satisfy
(R3), we must isolate pprocesses within a single address
space. In turn, (R1) and (R4) require this isolation to be
performed in a low-overhead and customizable manner.

3.3 Trust & Threat Models

pFork assumes the same trust and threat model as POSIX
fork. pFork’s Trusted Computing Base (TCB) is the OS ker-
nel, which includes the implementation of pFork. The OS
kernel distrusts all user code, encapsulated by one or more
uFork processes (pprocesses). We assume that OS kernel in-
terfaces properly sanitize user inputs. Where fork is used
for isolation across pprocesses, we assume that attackers
compromising one pprocess actively try to compromise the
rest of the system’s confidentiality, integrity or availability
through shared memory, IPC, and kernel interfaces. To that
list we add another attack vector which is direct addressing,
as pprocesses run within a single address space. We assume
that user code using the fork API for isolation properly
sanitizes cross-pprocess interfaces and appropriately sets
system access-control permissions upon fork since such ap-
plications were designed with this trust model in mind. We
consider side channels, including transient execution attacks,
out of scope of this work.
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3.4 Design Overview

We propose a design based on six building blocks to address
the requirements and challenges formalized earlier. We elab-
orate on these in the subsequent subsections.

1. pprocesses. In a pFork system, each thread is associated
with a pprocess ID (PID). Each pprocess may have many
threads. Spawning a new pprocess creates a new thread
with a new PID. This matches the semantics of fork,
which copies a single thread (R2).

2. Isolate pprocesses with CHERI. Satisfying (C2) re-
quires isolation within the address space. This can be
effectively addressed with CHERI’s intra-address-space
isolation [31, 47, 120], where all memory references are
bounded and so can be restricted to their own pprocess.

3. Leverage CHERI tags to relocate memory references.
Identifying absolute memory references to relocate in a
child pprocess is required to satisfy (C1). Memory tag-
ging offered by CHERI [124] can be leveraged to reliably
identify such references for relocation: upon fork, mem-
ory references can be easily identified if a valid tag is set,
and relocated to the child pprocess.

4. Leverage Position-Independent-Code (PIC) to limit
the number of references to be relocated. By com-
piling applications as PIC, most memory references are
relative either to the stack/base pointer or to the pro-
gram counter (PC). They can thus be relocated without
changes, ensuring the low pFork latency required for
lightweightness (R1).

5. Revisit Copy-on-Write (CoW) for pprocesses. POSIX
fork implementations reduce the overhead of fork by
only copying pages upon writes. This optimization can-
not be applied as-is with pFork, as the child accessing
a page in read mode containing absolute memory refer-
ences must trigger a copy of that page to perform the
corresponding relocations, to prevent the child pprocess
loading and using stale memory references which still
point to the parent pprocess. Hence, in its basic form
pFork requires copying each page accessed in write mode
by the parent or the child, but also each page accessed
in read mode by the child, something that we general-
ize as Copy-on-Access (CoA). To maintain lightweight-
ness (R1), CoA can be optimized into Copy-on-Pointer-
Access (CoPA), which lets pprocesses share memory un-
til a puprocess writes to it, or a child loads an absolute
memory reference.

6. Parameterized isolation. There are valid use-cases for
different levels of isolation (R4): real-world systems may
assume that processes distrust each other; that the entire
system is trusted but contains bugs; or even that the
entire system is trusted to function correctly. We design
pFork to cater for any of these design points.
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Figure 1. Memory layout of pFork. @ displays memory di-
rectly after a fork. The child is mapped to the parent pages
and absolute memory references point to parent memory. @
displays memory after the child accesses a page in the "code
and read-only data” area containing an absolute memory ref-
erence: this page has been copied, and the memory reference
relocated to point to child memory.

3.5 uFork: Forking a pprocess

We now walk through the steps taken when a pprocess calls
fork to concretize this design. This section is designed to be
read alongside Figure 1.

1. Parent State Duplication. When a pprocess forks,
uFork reserves enough contiguous virtual memory to accom-
modate the entire child pprocess including the stack, heap
and other data. The parent page table entries are copied:
initially, almost all pages of child memory are mapped to
the same physical pages as the parent pprocess, similarly
to a traditional CoW approach. Any attempt to modify the
heap, stack, TLS or other RW memory will result in a copy
of the page written being made, along with relocation of
absolute memory references should the page contain any.
As discussed, traditional CoW does not apply as-is, we thus
rework it into CoPA to ensure that all absolute memory ref-
erences contained in pages read by the child are relocated to
their correct pprocess locations before use. We discuss CoPA
in detail in §3.8.

This mapping stage is illustrated by @ in Figure 1. At this
stage, pages have not yet been accessed: parent and child
pprocesses share memory and memory references are not
updated. Pages containing memory-allocator metadata and
global offset table (GOT) entries are proactively copied and
updated during fork to ensure that the new pprocess ac-
cesses the correct memory when loading memory references
via the GOT or when performing heap operations. In ad-
dition to copying the memory associated with a pprocess,
relevant system resources are also duplicated as mandated
by POSIX, e.g., open file and message queue descriptors.

2. Post-Copy Phase. At this stage, the memory and re-
sources of the parent pprocess have been copied or mapped
where appropriate for the child pprocess to use. With the
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child pprocess memory and resources set up, pFork gen-
erates a new pprocess ID (PID) and stores it in a memory
location which cannot be modified by any pprocess. The PID
is used by the kernel to index per-process system resources
such as file descriptor tables. Following this, pFork creates a
new thread to run the pprocess. The initial state of the child
pprocess is the same as that of the parent, except that 1) the
entry point is located within the code in the child pprocess’s
memory area following the call to fork, and 2) any abso-
lute memory references contained in registers are relocated
to the proper locations in the child’s memory (tags extend
to values in registers, allowing differentiation of pointers
from integers). As the child pprocess accesses pages that
contain references or writes to memory, pages are copied, as
illustrated in @.

3.6 Isolation in pFork

Isolation is required by pFork at two levels: between

pprocesses (inter-pprocess), and between pprocesses and the
kernel. With regular POSIX fork, inter-process isolation
is enforced through having separate page tables for each
pprocess. This is not the case in pFork, where isolation must
be enforced with lightweight intra-address-space isolation.
pFork also implies a trust boundary between pprocesses and
the kernel. Here, two main vectors of attack must be con-
sidered. First, the system call interface must be hardened:
the kernel must perform various validity checks on system
call parameters, and also copy objects passed by reference
to protect against time-of-check-to-time-of-use (TOCTTOU)
attacks in concurrent systems [16]. Second, for SASOSes
such as unikernels which execute the kernel and applica-
tions at the same processor privilege level, uprocesses must
be prevented from executing privileged instructions.

Still, an important point of our approach to isolation is
to recognize that not all use-cases have the same needs for
isolation and the underlying trust and threat models of the
application must be preserved. In cases where processes are
assumed to distrust each other, e.g. when fork is used for
privilege separation, adversarial fault isolation is needed and
full isolation is required. An example of this is qmail [15]
where processes are used to isolate components such as
the SMTP server. This corresponds to U3. However, in many
cases the entire program is trusted, but may contain bugs that
should ideally trigger faults when occurring, e.g. a bad refer-
ence outside of the process’ accessible memory. Web servers
such as Nginx [76] use fork (U2) for increased throughput
by leveraging concurrency, and use this fault protection trust
model. In such a case, production settings may make use of
non-adversarial fault isolation, enabling memory isolation
and simple kernel checks, but opting out of more expensive
isolation primitives such as kernel-level TOCTTOU protec-
tions. In other cases, the entire system may be trusted to
function correctly, in which case production deployments
may simply disable isolation. An example is Redis using fork
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for performing a backup snapshot through copy-on-write:
the child is simple and operating on trusted input, and thus
is unlikely to trigger a bug and protections can be lifted.
We design pFork to be flexible and accommodate for these
different scenarios.

3.7 Memory Layout of a pFork-enabled SASOS

In a system using pFork, the kernel and application are com-
piled as PIC/PIE and each pprocess is loaded in a contiguous
area of the virtual address space, as illustrated in Figure
1. This allows intra-address-space isolation mechanisms re-
lying on contiguous bounds to easily set and check these
bounds, thus restricting pFork pprocesses to their private
memory. Finally, a global offset table (GOT), providing a
mechanism for PIC to locate global objects and functions in
memory, must lie within the bounds of each pprocess. In a
system using a standard fork implementation, the GOT is
not modified since the address space layout does not change
and memory references remain the same in the parent and
child. A child pprocess in pFork is located at a different part
of the address space, thus the GOT is copied and modified
during the fork to point to the correct locations within
the new pprocess. The application and kernel use disjoint
areas for dynamically allocated memory. ASLR can be im-
plemented by randomizing the base offset of the contiguous
memory area dedicated to each pprocess. Supporting shared
memory between pprocesses would be straightforward, re-
quiring shm_open to return a file descriptor representing an
area of shared memory and then map the same set of physi-
cal pages within the virtual address space areas of relevant
pprocesses. Similarly, shared libraries can be supported by
mapping those libraries in each pprocess when mapping a
binary and creating capabilities with the proper permissions.

3.8 Copying Memory: CoW vs. CoA vs. CoPA

Copy-on-Write (CoW) is a common optimization which re-
duces the overhead and latency associated with fork [49,
101]. When memory is marked as CoW, that memory is
shared between processes. As mentioned earlier, this is not
achievable with pFork due to the need for relocations within
pages accessed in read (and write) mode and containing ab-
solute memory references. To mitigate this issue, in its basic
form pFork requires Copy-on-Access (CoA), where memory
is initially shared by the parent and the child but marked as
inaccessible, thus any access will trigger a copy and reloca-
tions. We further propose Copy-on-Pointer-Access (CoPA),
an optimization to CoA where memory can be shared in
read-only mode like CoW, with an additional constraint that
if the child loads memory references, the containing page is
copied to relocate the references it contains first. This means
that non memory reference loads do not trigger copying.
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4 Implementation

We implemented a prototype of pFork on top of Unikraft [48],
a modern, actively maintained single-address-space operat-
ing system. The core motivation for implementing our proto-
type with Unikraft is its large compatibility with unmodified
applications [54] which will also run transparently with our
implementation of pFork, as well as its ability to run both
bare-metal and on top of a hypervisor. Further, Unikraft has
been leveraged in several research projects [29, 52, 89] that
explore the design space of SASOSes, making it particularly
suitable to satisfy (R4). Unikraft was also the basis of prior
works on supporting fork in SASOSes [69].

wFork: Building Blocks. pFork requires two fundamen-
tal building blocks: absolute memory reference identification
(C1) and an intra-address-space isolation mechanism (C2).
Our prototype implementation uses the CHERI hardware ca-
pability model [120, 124] that offers all the above-mentioned
features. CHERI supports memory tagging and also offers
intra-address-space memory protection by ensuring that ev-
ery memory reference is checked against the bounds of the
object it refers to. CHERI uses a sealing mechanism [118] to
enable exception-less security domain switches: we leverage
it for user/kernel isolation, satisfying (R1). Sealed capabili-
ties are data structures available to pprocesses which, when
used, trigger a safe transition to a predetermined and un-
forgeable location — in our case the system call handler in the
kernel. Finally, CHERI offers a fault on capability load [33, 65]
feature, with which we implement CoPA.

Implementation Overview. We ported Unikraft to CHERI
on the ARM Morello platform [8] (§4.1), and to execute on top
of the bhyve hypervisor on CheriBSD [120] (CHERI-enabled
FreeBSD) to leverage VirtIO networking on ARM Morello.
We implemented pFork as a new kernel library in Unikraft.
In total, we changed 7 KLoC in the kernel: 4,230 LoC for
CHERI and bhyve support in Unikraft, and 3,000 LoC for
pFork. Applications which run on Unikraft do not require
porting to work with pFork.

4.1 Porting Unikraft to CHERI

Porting Unikraft to CHERI (in “pure-capability mode” [118])
required a modest engineering effort. Key changes needed
were 1) in the early boot code to initialize CPU capability fea-
tures and registers (e.g. exception vectors); 2) in the virtual
memory allocator (tinyalloc [108]) to comply with CHERI’s
16-byte pointer alignment requirements and set bounds on
allocated memory; and 3) in broader kernel code to replace
pointer arithmetic with explicit pointer operations as capa-
bilities are not interchangeable with integers [119].

4.2 Implementation of pFork

Assigning capabilities to pprocesses. The key security
invariant the kernel must enforce to maintain isolation (R3)
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is that all capabilities (pointers) available to a pprocess only
grant access to memory falling within the area of the vir-
tual address space allocated to this pprocess. At boot, pFork
initializes capabilities for the kernel and applications. The
sealed capabilities which are needed for trapless system calls
are also set up at this stage. The above-mentioned security
invariant is enforced upon requests from the application for
memory allocation (e.g. mmap/brk), as well as upon and after
pprocess creation through pFork, where all absolute memory
references must be relocated to avoid leaking capabilities
from the parent to the child. This includes among others
the program counter capability (PCC), whose bounds and
permissions are used in PIC (see §3.4) for relative references
such as function calls (cf. Figure 1).

Our pFork prototype follows the memory layout of Figure
1. Each pprocess owns a private, statically-allocated heap
with a build-time-configurable size, from which the majority
of dynamic memory allocation requests are served. This is
done to reduce complexity in the TCB but can be replaced
with dynamic heaps. The kernel ensures anonymous mmap
requests are served by returning capabilities pointing to the
calling pprocess virtual memory area. Our modular proto-
type (R4) enables different trade-offs, e.g., using a single
shared isolation-aware heap [4], or per-pprocess heaps [52].

Copy-on-Pointer-Access. We implement CoPA using an
additional page-table permission bit present with CHERI,
which triggers a fault when a capability is loaded from that
page. Loading references from the parent pprocess and read
accesses do not trigger copies.

With this approach, following a fork, page copies are
triggered by writes from either the parent or the child, or
capability loads by the child. The copy follows three steps.
First, the child page table entry is changed to point to a free
physical page in memory and remains inaccessible until the
copying is finished. Then, the page is copied. Finally, the
copied page is scanned in 16-byte increments, which corre-
sponds to the size of a CHERI capability, for absolute memory
references pointing to parent memory: references are identi-
fied by the presence of a valid CHERI tag. For each reference
with a valid tag, its target and memory bounds are checked:
if it points outside of the pprocess’s dedicated memory area
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in the virtual address space or has bounds which allow ac-
cess outside the memory area, the reference is relocated to
the correct location in the child pprocess with bounds which
are restricted to that pprocess only. Thus, all references are
found and updated to point into child pprocess memory. Fig-
ure 2 shows CoPA in operation: the child attempts to write to
a page of memory (@) and read a pointer from an implicitly
shared page (@), resulting in a transparent copy similarly
to standard CoW. Similarly, the parent attempts to write to
a page of memory (@)), triggering a copy. This approach
covers all possible references; absolute references are identi-
fied via a valid tag, and all references derived from these are
tightly bounded to the pprocess since CHERI bounds cannot
increase; relative references use a base absolute reference
(e.g. stack/base) which are identified and updated.

4.3 Cross-pprocess Isolation

Inter-pprocess isolation with CHERI is enforced following
two principles. First, uprocesses cannot increase their priv-
ileges. By design, the privileges associated with a CHERI
capability (e.g. bounds of the area it points to) cannot be in-
creased (monotonicity) [118]. A pprocess thus cannot forge
a capability with greater privileges to escape its protection
domain. Second, capabilities do not leak across pprocesses.
Memory copies are triggered by CoPA in all cases that may
enable a child pprocess to access a stale capability. As part
of the copy, parent capabilities are relocated and thus not
exposed to child pprocesses. Integers can be used for relative
addressing, however, these are subject to the bounds of the
capability they are relative to, such as the program counter,
all of which are restricted to the local pprocess.

4.4 pprocess-Kernel Isolation

User-kernel isolation follows 4 principles. First, kernel entry-
points are protected. In our prototype, system calls are per-
formed through safe transitions using sealed kernel code
capabilities [118]. Sealed capabilities restrict kernel entry
points and there is no other way for a pprocess to invoke
kernel code. Such restriction is similar to that of traditional
system call instructions, however it is achieved without the
need for a costly trap, to comply with (R1).

Second, pprocesses cannot execute privileged instructions.
Our pFork prototype executes the pprocesses and kernel at
the same processor privilege level (EL1). To prevent user
code from executing system instructions which could com-
promise the security of the system, we leverage the CHERI
system permission capability permission bit [118]. pprocess
capabilities do not have this permission and thus cannot
execute privileged instructions including MSR and MRS in-
structions. This approach satisfies (R1) through avoiding the
need for costly memory scanning [27].

Third, data flowing into the kernel is validated. A malicious
pprocess may attempt to pass corrupted data to the kernel
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through system call arguments. This is a major source of secu-
rity vulnerabilities in commodity OSes [10, 58, 60, 116, 129],
which may enable attackers to e.g. trick the kernel into leak-
ing data or capabilities to another pprocess’ memory. Care-
fully sanitizing untrusted inputs becomes necessary in much
the same way as other OSes. Still, not all deployments of
pFork may have an adversarial threat model (R4) (§3.6), thus
we make it easy to disable checks for a given deployment.

Fourth, pprocess buffers passed by reference to the kernel
are copied. TOCTTOU vulnerabilities are possible if a ker-
nel input can be modified by a pprocess between a check
and its use, negating the check [16, 126, 127]. To prevent
this we copy values to kernel memory before checking and
upon completion, back to user memory, a mechanism used
in commodity OSes. Following our flexibility design goal
(R4), we make it possible to disable TOCTTOU protections
for non-adversarial threat models.

4.5 Retrofitting pFork into an existing SASOS

Many implementations of pFork will be retrofitted into exist-
ing SASOSes, rather than built into entirely new operating
systems. The aforementioned address space duplication ap-
proach of pFork is OS-agnostic, however introducing multi-
processing in a SASOS will also require per-OS engineering
efforts. We describe such effort here, showing that for our
prototype based on Unikraft it was relatively modest.

Per-Process Kernel State. SASOSes which are designed
to run a single process, such as unikernels [47, 48, 52, 71, 80],
may not support per-pprocess state: file descriptor tables,
task structs, PIDs, process scheduling, per process signals,
among others. This is because assuming that there is no more
than one process in the system allows simplifying the devel-
opment of these OSes and of the POSIX-like compatibility
layers they generally expose [54]. The amount of refactoring
required to support per-process kernel state will be variable
on a case-by-case basis, depending on the target SASOS, and
can be non-negligible. For our prototype we added the OS
process features needed for the applications presented in
evaluation including per-pprocess file descriptors and task
structs, PIDs and scheduling. Further, we refactored the im-
plementation of system calls such as wait and getpid to fa-
cilitate pprocess support, and added support for per-uprocess
heaps.

User-Kernel Separation. SASOSes such as unikernels
are designed with no user/kernel isolation. This does not
allow for support of the generic threat model of POSIX fork
(§3.3), unless additional protections are implemented (§4.4).
Still, the absence of isolation may be acceptable in the threat
model of such OSes (R4). Unikernels may for example want
to implement fork for concurrency or copy-on-write snap-
shot patterns, but not for privilege-separation patterns due
to their design choices. In Unikraft, we implemented the
checks discussed in §4.4 to showcase the cost of different
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levels of protection. We also extended Unikraft’s build sys-
tem to differentiate between application and kernel code
through linker scripts, which helps to locate the kernel and
applications in contiguous areas of the virtual address space.

Symmetric Multiprocessing (SMP) Support. SASOSes
designed for a single process may not support SMP, an im-
portant feature required for certain fork use cases, e.g. to
exploit concurrency. Hence, it may be necessary to retro-
fit SMP into the OS, which comes too at a non-negligible
cost. Unikraft currently supports SMP with a “big kernel
lock”, letting application code run concurrently but serializ-
ing kernel code execution. Optimized support is under active
development by the community:.

5 Evaluation

The evaluation aims to answer the following research ques-
tions (RQs):

RQ1: How does pFork compare to a monolithic kernel and
existing SASOS fork implementations on key lightweightness
metrics? We use Redis, MicroPython and microbenchmarks
to examine fork latency, memory consumption, and IPC
performance.

RQ2: How does the overall performance of applications run-
ning on pFork compare to a monolithic kernel’s fork? We
examine overall system performance through popular fork-
based applications: Redis, MicroPython, and Nginx, com-
pared to CheriBSD.

RQ3: Does pFork enable applications to unlock the benefits
(e.g. concurrency) of fork effectively? We evaluate concur-
rency with MicroPython and Nginx compared to CheriBSD.
Additionally, Redis leverages CoW to enable its background
database dump feature.

RQ4: How does CoPA compare to CoA and a full copy? We
use Redis to examine the effect of CoPA compared to CoA
and synchronously copying memory upon fork.

We compare pFork with CheriBSD [24], a CHERI port of
FreeBSD, and Nephele [69], a virtualization-based approach
to support fork in a unikernel. CheriBSD is the most mature
capability-aware monolithic kernel running on the Morello
platform, and Nephele represents the most-recent attempt at
supporting fork in a SASOS (by re-introducing multiple ad-
dress spaces). We do not include a non-CHERI baseline since
this introduces additional variables; the CHERI/Morello pro-
totype hardware and software stack is still not fully mature
and thus software running in pure-capability mode faces
in some situations non-negligible overheads that have been
well-documented [64]. Analysis has shown that the majority
of these overheads can be eliminated in future hardware im-
plementations [117], reducing the overhead to a negligible
level (1.8 - 3%).

All comparisons are made between pFork executing on top
of the bhyve hypervisor on CheriBSD 23.11, and CheriBSD
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23.11 running natively in pure capability mode and with
performance optimizations enabled [23]. pFork needs to run
virtualized as the Unikraft kernel we build upon lacks I/O
drivers beside VirtlO. We encountered difficulties running
CheriBSD virtualized, and note that running it bare metal
gives it a conservative advantage vs. uFork executing on top
of bhyve. All experiments are run on the ARM Morello devel-
opment system [8] with 4 ARMv8.2-A cores @ 2.5 GHz and
16 GB RAM. Nephele [69] is designed for x86_64 only. For
this reason direct performance comparisons between appli-
cations running on pFork and Nephele cannot be achieved.
For the sake of completeness, we replay Nephele’s relevant
microbenchmarks (fork latency, memory consumption) with
uFork and compare the results with numbers extracted from
Nephele’s paper. Further, we examine the effect of TOCT-
TOU protections and how our CoPA optimization compares
to both CoA and a full synchronous copy of the parent’s
memory upon fork. The graphs report averages of 10 mea-
surements, with standard deviation as error bars (in many
cases hardly visible because of the results’ stability).

5.1 Real-World fork-based Use-Cases

We examine pFork through three popular fork-based appli-
cations, Redis [87], MicroPython [36, 37, 64], and Nginx [76].
Each application utilizes fork for a different purpose, and is
impacted differently by the characteristics of this primitive.

Redis uses fork and its on-demand CoW state duplication
capabilities to create a database snapshot and save it to the
disk in the background (U2 + U4). Here, fork latency is
important, since the main database cannot handle requests
during this time. We use Redis for RQ1, RQ2 and RQ3.

MicroPython is a lightweight implementation of Python,
a language runtime commonly used in Function as a Service
(FaaS) frameworks [94]. FaaS relies on low cold start times
to rapidly handle incoming requests and low resource con-
sumption to handle as many requests as possible [43, 62, 96].
fork is a compelling mechanism to achieve this [6, 59, 78],
by spawning new instances from an already initialized lan-
guage runtime (U2 + U5). These requirements map directly
to low fork latency and memory consumption (RQ1). In ad-
dition, exploiting concurrency, as enabled by fork, is crucial
in Faa$S due to the stateless nature of functions (RQ3).

Finally, Nginx uses fork to spawn worker processes, iso-
lated from each other, and handling requests concurrently
(U5), used to answer RQ3. Unlike the other applications
evaluated, here fork latency does not play a significant role,
since Nginx workers are long-lived.

Redis snapshots. We run Redis on CheriBSD and pFork.
This experiment populates a Redis database with different
amounts of 100 KB entries and then triggers a background
save operation. Both systems store the resulting database
dump to a ram-disk, minimizing I/O latency. Figure 3 shows
the overall save times of Redis with database sizes ranging
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from 100 KB to 100 MB. Across the range, pFork outperforms
CheriBSD. pFork is 1.9x faster than CheriBSD at 100 KB (1.8
vs. 3.4 ms), and 1.4x faster at 100 MB (109 vs. 158 ms).

Figure 4 shows the fork latency (time needed for the
fork call to complete) caused by forking the main Redis pro-
cess with various database sizes. pFork is consistently faster
and more lightweight than an equivalent process forking on
CheriBSD, by a factor of 5-10x. This latency difference can
explain the larger difference in save times seen at smaller
database sizes, although with larger databases fork’s latency
is not the bottleneck in the overall database save operation.
Here, pFork’s lightweight state transfer method and page-
table updates, as well as the lower cost of making exception-
less system calls at the same exception level [48], help to
explain the difference. The results also show that CoPA can
reduce fork latency by up to 89x vs. realizing a synchronous
copy, and up to 1.18x vs. CoA since less memory must be
copied. The cost of TOCTTOU protection is relatively minor
(2.6% at 100 MB).

The memory consumption of the forked Redis process
with different database sizes also gives a real world exam-
ple of how the lightweightness of uFork translates to a real
application. Figure 5 shows that the memory consumed by
a forked Redis process on pFork is significantly lower than
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on CheriBSD, 6 MB compared to 56 MB with a 100 MB data-
base which can be explained by higher allocator memory
consumption. For context, at 100 MB database size, a forked
Redis process consumes 7 MB on a standard aarch64 Linux
install on the ARM Morello system meaning that the high
CheriBSD figure is likely something which can be reduced
with further optimization.

Function as a Service. Faa$ functions are typically short-
lived, with 50% of functions taking less than 1s to execute [95].
Thus, FaaS aims to keep the time needed to start a new in-
stance of a function before executing it (cold start) low, as
long cold starts severely reduce the efficiency of the sys-
tem. This experiment uses the Zygote language runtime
pre-warming technique [6, 78, 98]: the runtime is initial-
ized (e.g. loading Python imports) once in a Zygote process,
and subsequently each request is served by forking the Zy-
gote into children that execute the function. We used the
float_operation benchmark from FunctionBench [44]: to
reduce the effect of I/O and system calls, it performs a series
of calculations before returning. The experiment setup sees
a single thread forking as many times as possible within a
10-second time window on both CheriBSD and pFork. Here,
both systems are able to take advantage of concurrency over
multiple cores. The Morello CPU has 4 cores, 1 is used for
the coordinating thread, and the rest for function execution.

Figure 6 shows the number of functions executed per sec-
ond on 1 to 3 cores. The benchmark does not perform system
calls and I/O, thus function throughput is primarily impacted
by fork latency. As a result, puFork outperforms CheriBSD
processes: its lower pFork latency allows it to handle 24%
more requests. The cost of TOCTTOU protection is negligible
since the experiment is not system-call intensive.

Nginx multi-worker deployments. Nginx forks workers
to leverage concurrency and thus handle more requests. For
this experiment we use the wrk benchmark to measure the
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throughput of Nginx with 1, 2, and 3 workers on CheriBSD
and pFork. Here, pFork is limited by the immature support of
SMP in Unikraft which hampers network performance across
multiple cores (§4.5). This is not a limitation of pFork, and the
issue is currently being addressed by the Unikraft community.
For this reason, we were unable to get stable numbers on
more than one core and Figure 7 shows the performance
of Nginx running on a single core only with pFork. Still we
include these results to demonstrate compatibility: Nginx can
run using pFork. Despite the single core restriction, we see
a 15.6% performance improvement by increasing the worker
count on pFork from 1 to 3, likely due to workers yielding
during I/O. We show CheriBSD performance both when
allowed to scale to multiple cores and when restricted to a
single core. Unsurprisingly, CheriBSD outperforms pFork
across multiple cores, however, restricted to a single core,
pFork is able to handle 9% more requests. The throughput
cost of TOCTTOU protection is 6.5% on average.

5.2 Microbenchmarks

fork Latency. We measured the latency observed when
forking a single minimal process (hello world C program),
and using Unixbench Spawn [68] measuring the time taken
to fork 1000 processes as fast as possible. The results are
presented on Figure 8 (hello world) and Figure 9 (Unixbench).
pFork has a consistently lower latency vs. CheriBSD and
Nephele. Unlike Nephele, uFork does not need to create a new
Xen domain, which is notably a costly endeavor. As a result,
pFork’s fork latency is several orders of magnitude smaller:
54 ps vs. 10.7 ms. Similarly, pFork outperforms CheriBSD,
with a fork latency of 54 us vs. 197 ps, aided by its simple
state transfer mechanism. Looking at Unixbench Spawn,
1000 consecutive forks and exits are completed in 56 ms on
pFork and 198 ms on CheriBSD, attributable to the lower fork
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latency and the exception-less, single-privilege-level context
switches between user and kernel mode in pFork [71].

Memory Consumption. An important factor in consid-
ering how many processes a system can handle is memory
consumption. We consider the proportional resident set as
the memory consumed by a process. Figure 8 shows the
memory consumed per process when forking a minimal ap-
plication. Again, pFork shows its lightweightness, occupying
only 0.13 MB compared to 1.6 MB for Nephele and 0.29 MB
for CheriBSD. This size difference can be attributed to mem-
ory consumed by shared libraries and the memory allocator.

Inter-Process Communication. Fast IPCs are one of the
main benefits of SASOSes, and pFork unlocks them for the
first time in fork-based applications. We use the Unixbench
Contextl benchmark, which opens a pipe between two pro-
cesses and increments a number until a set value is reached,
in this case 100k. Figure 9 shows that pFork completes this
in 245 ms compared to 419 ms on CheriBSD. This differ-
ence in performance can be attributed to the exception-less,
single-privilege-level system calls in pFork.

CoPA vs. CoA vs. Full Copy. The effect of CoPA versus
CoA and upfront copy is shown in Figure 4 and Figure 5. As
pFork is built using large static heaps, the memory trans-
ferred by a full copy is correspondingly large, e.g. consuming
144 MB with a 100 MB Redis database, of which 136.7 MB
is the large static heap. So too is the fork latency, taking in
that case 23.2 ms. CoA is cheaper, consuming 101 MB and
thus fork latency is lower at 283 ps since not all memory
will be accessed by pprocesses. This demonstrates that per-
formance is still improved over an upfront copy on systems
which cannot support CoPA. CoPA reduces the consumed
memory to 6 MB, and the fork latency further to 260 s with
a 100 MB database because read accesses to shared memory
are allowed by the child and parent.

6 Discussion

Alternatives to CHERI Absolute memory references
must be accurately identified to enable their relocation to an-
other part of the address space to implement pFork. Beyond
CHER], this can be achieved with other hardware memory
tagging technologies [11, 93, 102, 103] that associate with
each memory location a tag able to hold metadata regarding
that location. This tag could be used to mark memory loca-
tions containing absolute memory references. That would
need to be associated with compiler-generated instrumen-
tation to propagate tags e.g. when a reference is copied or
derived from another reference (something realized trans-
parently by the hardware with CHERI). Alternative software
approaches can also be used, such as shadow memory [92],
maintaining a map of memory locations containing refer-
ences, also set up and maintained with compiler-generated
instrumentation.
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pFork further requires an intra-address-space isolation
mechanism to isolate pprocesses. Various approaches have
been proposed to achieve this [53]: on the hardware side
different flavors of memory protection keys [7, 42, 90] pro-
vide intra-address-space page-level memory protection as
well as exception-less (i.e. fast) protection domain switching,
which is important for lightweightness. Other hardware tech-
nologies such as Mondrian memory protection [123] offer
byte-level isolation. Software approaches such as software
fault isolation [113] or fat pointers [75] may also be used,
although the associated performance hit may be deterring.

Beyond these two main requirements that are necessary
for a functional implementation of pFork, an optional feature
that is needed for our CoPA optimization is the capacity to
fault on a subset of memory accesses: the loads of absolute
memory references. We are not aware of a mechanism other
than CHERI offering the ability to fault on memory reference
loads needed to implement CoPA. However, as we show in
the evaluation, systems which cannot support CoPA still
show significant performance improvements from CoA.

Fragmentation. A limitation of pFork is the fact that
pprocesses are loaded into potentially large contiguous ar-
eas of virtual memory, raising concerns about fragmentation.
The 64-bit virtual address space we target is very large, and
we expect that the vast majority of multiprocess applications
will not exhaust that space. For scenarios where fragmen-
tation could be a problem (long-running applications, fork-
ing a high number of pprocesses requiring large contiguous
amounts of memory), solutions including compacting the
virtual address space periodically or using size classes akin
to size-class memory allocators [55, 99, 100], can be explored
in future work.

7 Related Work

Single-Address-Space OSes. SASOSes have been an ac-
tive research topic since their inception in the 1990s. Foun-
dational works such as Opal [22], Nemesis [88], Angel [121],
and Mungi [39] simplified and improved the performance
of IPCs and I/O by placing all processes and data in a sin-
gle address space. Since then, many types of SASOSes have
been proposed, including single-level-store OSes [56], data-
plane OSes [14], software-isolated OSes [19, 41], and uniker-
nels [47, 48, 52, 71, 80, 89]. The lack of fork in SASOSes
is a well-known issue that attracted significant research ef-
forts [39, 57, 69, 109, 121, 130]. Other relevant SASOS re-
search focuses on isolating components in a single address
space [2, 3, 31, 79, 89, 106, 125]. Notable examples include
Singularity [41] which isolates between processes using stat-
ically verified invariants, FlexOS [52] which uses build-time
user-defined schemas to isolate components using different
mechanisms [47], and RustyHermit [106] which uses Intel
MPXK for lightweight intra-address-space isolation.
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Single-Address-Space fork. As the historical process-
creation primitive, fork remains a widespread part of mod-
ern UNIX OSes. Attempts have been made to support fork
within a single address space. A first category of works, in-
cluding Angel [121] and Mungi [39], used segment-relative
addressing to relocate the process. As discussed earlier (§ 2.3),
this approach is complex and requires significant compiler
and application porting work. A more recent class of works
sees the OS as a process and relies on an external entity
to perform the fork: Graphene/Gramine [109, 110] and Ves-
sel [61] run as a process and piggyback onto the host OS’
fork; KylinX [130] and Nephele [69] rely on a hypervisor
implementation of fork. Unlike pFork these approaches rein-
troduce multiple address spaces and thus defeat the principle
of SASOSes and rely on more expensive fork implementa-
tions (host OS or hypervisor) which hurts overall perfor-
mance. Iso-Unik [57] also re-introduces multiple address
spaces within the SASOS, which hurts lightweightness. A last
class of works focuses exclusively on vfork + exec patterns.
CHERI co-processes [18] support multiple processes (vfork
+ exec) within a single address space to enable faster IPC.
Junction [35] supports multiple instances of a process within
an address space although without isolation. Occlum [97]
supports posix_spawn within a single enclave. However,
this does not support the state duplication feature of fork,
and requires applications to be modified to use posix_spawn
instead of fork.

Memory Reference Identification. CARAT [104] and
CARAT CAKE [105] replace hardware paging with a soft-
ware implementation. In doing so they encounter the same
challenges of memory reference identification and intra-
address-space isolation as pFork. These problems are solved
with compiler generated instrumentation, which is used to
track memory references and also is used as SFI to provide
isolation. However, CARAT/CARAT CAKE has a number of
limitations, including lack of compatibility with unmodified
JIT’ed languages due to the use of SFI and worse performance,
since CARAT’s evaluation shows acceptable overhead only
when virtual-to-physical mappings do not change, which
is not the case for fork. Memory reference identification is
also a problem faced by dynamic ASLR works including Run-
timeASLR [66], TASR [17] and Shuffler [122] and garbage
collectors which must identify pointers to objects they relo-
cate during compaction [12, 28, 70, 86].

8 Conclusion

We present pFork, a design for true single address space
fork using modern architectures. Previous works sacrifice
the lightweightness benefits of SASOSes, isolation, and/or
transparency. In contrast, pFork preserves a single address
space design to maintain lightweightness, uses intra-address-
space isolation mechanisms to segregate pprocesses and the
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kernel, and works on unmodified applications. pFork outper-
forms a monolithic OS, CheriBSD, as well virtualized SASOS
competitor, Nephele, on key fork/SASOS metrics by an order
of magnitude. Our pFork prototype is open source and can
be found here: https://github.com/flexcap-project/ufork.
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