
Loupe: Driving the Development of
OS Compatibility Layers
Hugo Lefeuvre

The University of Manchester

Manchester, UK

Gaulthier Gain

University of Liège

Liège, Belgium

Vlad-Andrei Bădoiu

University Politehnica of Bucharest

Bucharest, Romania

Daniel Dinca

University Politehnica of Bucharest

Bucharest, Romania

Vlad-Radu Schiller

The University of Manchester

Manchester, UK

Costin Raiciu

University Politehnica of Bucharest

Bucharest, Romania

Felipe Huici

Unikraft.io

Heidelberg, Germany

Pierre Olivier

The University of Manchester

Manchester, UK

Abstract
Supporting mainstream applications is fundamental for a

newOS to have impact. It is generally achieved by developing

a layer of compatibility allowing applications developed for a

mainstream OS like Linux to run unmodified on the new OS.

Building such a layer, as we show, results in large engineering

inefficiencies due to the lack of efficient methods to precisely

measure the OS features required by a set of applications.

We propose Loupe, a novel method based on dynamic

analysis that determines the OS features that need to be im-

plemented in a prototype OS to bring support for a target

set of applications and workloads. Loupe guides and boosts

OS developers as they build compatibility layers, prioritiz-

ing which features to implement in order to quickly support

many applications as early as possible. We apply our method-

ology to 100+ applications and several OSes currently under

development, demonstrating high engineering effort savings

vs. existing approaches: for example, for the 62 applications

supported by the OSv kernel, we show that using Loupe,

would have required implementing only 37 system calls vs. 92

for the non-systematic process followed by OSv developers.

We study ourmeasurements and extract novel key insights.

Overall, we show that the burden of building compatibility

layers is significantly less than what previous works suggest:

in some cases, only as few as 20% of system calls reported

by static analysis, and 50% of those reported by naive dy-

namic analysis need an implementation for an application

to successfully run standard benchmarks.

This work is licensed under a Creative Commons Attribution International
4.0 License.
ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0372-0/24/04.
https://doi.org/10.1145/3617232.3624861

CCS Concepts: • Software and its engineering→ Oper-
ating systems.

Keywords: Operating Systems

ACM Reference Format:
Hugo Lefeuvre, Gaulthier Gain, Vlad-Andrei Bădoiu, Daniel Dinca,

Vlad-Radu Schiller, Costin Raiciu, Felipe Huici, and Pierre Olivier.

2024. Loupe: Driving the Development of OS Compatibility Layers.

In 29th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 1 (ASPLOS
’24), April 27-May 1, 2024, La Jolla, CA, USA. ACM, New York, NY,

USA, 19 pages. https://doi.org/10.1145/3617232.3624861

1 Introduction
An operating system is only as useful as the applications

it can run. Thus, developers of new OSes seeking to gather

early performance numbers, to attract open source contribu-

tors, early investors, or to transition to real-world use [40, 55]

need to provide support for existing applications. Manually

porting software [4, 17] is only viable in the short term [51,

52], hence developers of new and existing OSes must provide

support for unmodified software by building compatibility

layers [5, 6, 10, 11, 18, 20, 28, 30, 31, 43, 45, 50–52, 57, 61, 62,

64] that present applications with interfaces similar to that

of popular OSes such as POSIX or the Linux kernel ABI.

Building a compatibility layer represents a non-negligible

engineering effort [31, 40, 41, 45, 46, 51, 52, 55] and involves

1) identifying the OS features (system calls, pseudo-files)

required for a target application and 2) implementing these

features. This process is iteratively repeated for each appli-

cation to support. In this paper we focus on streamlining 1),

the latter being generally OS-specific [31].

We observe that, despite their cost, compatibility layers

are often developed in an ad-hoc fashion [31]: there is no

systematic approach to determine and prioritize what OS

features to develop and when, which applications to support,

or to what extent used system calls should be implemented

249

https://doi.org/10.1145/3617232.3624861
https://doi.org/10.1145/3617232.3624861
https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3617232.3624861&domain=pdf&date_stamp=2024-04-17

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Lefeuvre et al.

to achieve a desired degree of support. This results in a sig-

nificant amount of unnecessary engineering.

Past attempts at streamlining that process leverage static

analysis [63] and suffer from its drawbacks, heavily overesti-

mating the set of OS features required to support an applica-

tion. For instance, while binary-level static analysis identifies

that >100 system calls are required to conservatively support

the entire superset of operations, configurations, and error

handling code in Redis (much of which can be quite rarely

used in practice, or simply irrelevant for an early prototype),

we find that only 42 are actually needed to reliably pass its

entire test suite, and just 20 to run redis-benchmark.

Hence, OS designers often fall back to naive dynamic anal-

ysis, e.g., using strace. These tools fail to take into account

common practices used in early OS development to save

engineering effort: feature stubbing (returning -ENOSYS [3]

upon invocation, without implementing the feature), faking

feature success (returning a success code without imple-

menting the feature), and partial implementation of complex

features [40, 51]. Indeed, in early development, the goal is

not to support every feature but rather core functionalities

of target applications [31]. For example, we find that more

than half of the system calls invoked by Redis running the

redis-benchmark can be stubbed or faked, and do not need

to be implemented to support that application and workload.

We propose a systematic methodology based on dynamic

analysis, centered around a novel tool called Loupe. Loupe
measures, for an application and a given input workload (e.g.,

a benchmark, test suite), which OS features really need to

be implemented and which ones can be faked, stubbed, or

partially implemented. Loupe also computes, given an OS un-

der construction and a set of applications and workloads, an

optimized development plan to support as many applications

as possible with as little engineering effort as possible.

Dynamic analysis comes with its own challenges, in par-

ticular the difficulty to scale to numerous applications. This

is tackled by designing Loupe to require as little effort as

possible to integrate a new application, letting us present

results for more than 100 applications in our evaluation. An-

other challenge is how to detect OS features that can be

stubbed, faked, or partially implemented. This is addressed

by leveraging Linux’s seccomp [23] and ptrace [19] tracing

and interposition facilities to measure what OS features’

implementation can be avoided with these techniques.

We run Loupe on 100+ popular applications, and present

examples of optimized Linux compatibility layer develop-

ment plans obtained with Loupe for three OSes under con-

struction [5, 10, 45] with various levels of existing support for

the Linux system call ABI. We further measure the engineer-

ing effort savings obtained by using Loupe to drive the devel-

opment of compatibility layers. Taking half the applications

supported by OSv [43], Loupe reports that only 37 system

calls are required to run them, vs. 92 for our estimation of

the non-systematic process followed by OSv developers, and

142 for a process driven by strace-based dynamic analysis.

We study Loupe’s Linux API usage measurements for our

set of applications. This analysis brings many new insights.

We demonstrate that the minimal effort needed to provide

compatibility is significantly lower than that determined by

previous works using static analysis [63]. Our study shows

that as much as 40-60% of system calls found in applica-

tion code do not need implementation to successfully run

meaningful workloads, including full test suites. We also find

that many applications are resilient to stubbing, faking, and

partial implementation of OS features. We investigate the

reasons behind it, and the impact of such practices on ap-

plication performance and resource usage. Finally, we study

how the C library influences OS feature requirements.

In all, this paper makes the following contributions:

• A novel methodology to measure the minimum set of

OS features that need implementation for a compatibil-

ity layer to support a set of applications and workloads,

with the aim of minimizing development effort.

• Loupe, a tool able to derive, for a given OS and target

applications, an optimized OS feature support plan to

run as many apps as possible, as early as possible.

• A demonstration of the engineering effort savings ob-

tained with Loupe, with examples of optimized feature

implementation plans for 11 OSes under development.

• An analysis, using Loupe, of the OS features required

by a set of applications showing the lack of precision

of past approaches and investigating common devel-

opment practices in compatibility layer development.

Loupe is actively used in Unikraft [45], an open-source

commercial OS, and has attracted the attention of several

others. Overall, this study brings a message of hope: con-

trary to what past work seems to suggest, a good degree

of compatibility with existing applications can be achieved

without immense engineering, provided we follow a focused

andmethodical approach. Loupe and our results are available

online
1
under an open-source license.

2 Motivation and Approach
Building Compatibility Layers for New OSes. Com-

patibility layers can be found in mature OSes for interoper-

ability reasons [11, 18, 28, 50, 61], but also in a plethora of

new/prototype/research OSes [5, 6, 10, 20, 30, 31, 43, 45, 51,

52, 57, 62, 64]. Providing support for existing applications in

these OSes is generally crucial [45, 47, 51, 52] to gather early

performance numbers, to attract open source contributors,

early investors, or transition to real-world use. Manually

porting software [4, 17] is not sustainable in the long run,

nor does it scale to a large amount of applications [51, 52].

Hence, the developers of many new OSes resort to imple-

menting compatibility layers. Even considering OS models

1https://github.com/unikraft/loupe / https://github.com/unikraft/loupedb

250

https://github.com/unikraft/loupe
https://github.com/unikraft/loupedb

Loupe: Driving the Development of OS Compatibility Layers ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

that choose to drop application compatibility for other gains

(e.g., performance), it is not uncommon to see Linux ver-

sions of these models appear a few years after the seminal

paper, with claims of stronger compatibility, e.g., Popcorn

Linux [33] for the multikernel [34] or Graphene, Lupine and

UKL [46, 58, 62] for the unikernel [48, 49].

Building a compatibility layer is seen as a non-negligible

engineering effort [31, 40, 41, 45, 46, 51, 52, 55, 63]. We in-

vestigated the compatibility layers present in several open-

source OS projects [5, 6, 10, 20, 30, 31, 43, 45, 51, 52, 62, 64].

Based on this study, and on our multiple years of experience

providing Linux/POSIX compatibility in research OSes, we

observe that compatibility layers are built in an ad-hoc, non-

systematic (“organic”) way: developers select an application

to support, determine the OS features it requires, and imple-

ment them [31]. That process is repeated for each target appli-

cation. Because somany projects undergo the task of building

compatibility layers [5, 6, 10, 11, 18, 20, 28, 30, 31, 43, 45, 51,

52, 61, 62, 64], there is a need for tools to streamline that pro-

cess. The corresponding effort consists in 1) identifying OS

features required by target applications and 2) implementing

these features. The latter task is known to be very specific

to the new OS considered [31], and can hardly be stream-

lined. We show in this paper that the former task, identifying

and prioritizing what OS features to implement, can be sys-

tematized and optimized. Next, we motivate our method by

explaining how past and current approaches are suboptimal.

Limitations of Static Analysis. Existing approaches

measuring the usage of OS features by applications often rely

on static analysis [32, 35–38, 51, 52, 54, 63, 65]. Static analysis

is comprehensive: the set of features identified for an appli-

cation includes all the ones that may be invoked at runtime,

under any possible workload, operation, or configuration,

and traversing any possible error path. Alas, static analysis is

also conservative and yields many false positives: it overes-

timates OS features that will actually be invoked at runtime.

Static analysis can be performed on application sources

or binaries. Binary analysis [32, 36, 37, 51, 52, 63] scales well

to a large number of applications because it targets a com-

mon format (e.g., ELF binaries). However, it suffers from

a lack of precision due to the difficulty of extracting infor-

mation from a binary [37]. Such issues may be alleviated

with source-level analysis [38, 65], which is however not a

panacea: it is language-specific, making it difficult to scale

to many applications written in different languages.

Tsai et al. [63] measure, using static binary analysis, the

system call usage of the entire set of applications from an

Ubuntu distribution. The study concludes that to support

100% of the distribution’s packages, 272 system calls need

to be implemented. That number goes down to 81 system

calls for the 10% most popular applications. These results

suggest that a large implementation effort would be required

for an OS aiming at supporting even a few applications. As

we demonstrate in the evaluation, both source- and binary-

level approaches significantly overestimate the OS features

required by an application to run popular workloads. This is

due to dead or unexecuted code, and the difficulty or impossi-

bility to statically determine runtime-level information (e.g.,

memory content such as function pointers). Although all of

these system calls would likely need to be implemented in

a production-grade general-purpose OS, these numbers re-

main an upper bound of limited usefulness for OS designers

in earlier development stages.

Limitations ofNaiveDynamicAnalysis. Dynamic anal-

ysis too has well-known drawbacks. Its precision depends

on the coverage of the input workload run during the anal-

ysis: if it is too low, some required OS features may not be

identified. It is also harder to fully automate, as there is a

variable amount of manual effort required for each applica-

tion to analyze (e.g., selecting an input workload). In this

paper we refer to using a tool such as strace [24] to trace

OS features invoked by an application, as naive dynamic

analysis. The main drawback of naive dynamic analysis is its

failure to consider two techniques commonly used in early

OS development [40]:

• Feature stubbing: not implementing the feature and return-

ing an error code (-ENOSYS: “Not Implemented” [3]) to the

application when it invokes the feature.

• Faking feature success: not implementing the feature and

returning a success code (typically system-call specific) to

the application upon invocation.

The two examples below are extracted from the source

code of the HermiTux unikernel [51], where the sigaltstack

system call is stubbed, and the mprotect system call is faked:

long sys_sigaltstack(const stack_t *ss, stack_t *oss) {
return -ENOSYS; // stubbed: not supported

}

long sys_mprotect(size_t addr, size_t len, uint64_t prot) {
return 0; // faked: pretending success

}

Many applications are resilient to the failure of OS fea-

tures [40, 59] and will run correctly when stubbing and fak-

ing. In this study, we show that many invoked OS features

can avoid being implemented through these practices in the

development stages of an OS. This highlights the importance

of faking and stubbing as an engineering practice: without

it, showcasing a particular application use-case for a new OS

concept would take significantly longer, or even be unattain-

able for a small-scale research project. Despite of this, naive

dynamic analysis does not typically consider stubbing and

faking. Naive dynamic analysis traces all features and sub-

features invoked by an application, independently of the fact

that they can be stubbed/faked or not for a given workload.

Thus, OS designers typically rely on trial and error to de-

termine which features they need to implement first, and

which ones they can fake or stub.

251

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Lefeuvre et al.

When to Stub or Fake and When not To? The reliance

on stubbing and faking as a development practice in transi-

tional OS development stages introduces a pivotal question:

when to stub and fake, and when not to? This question is

driven by two sources of concern:

• Impacting stability. Although guaranteed stability of entire

applications is not a primary goal in the early development

stages of an OS, faking and stubbing must not impact the

stability of relevant application features. Failing to do so

would negate the benefits of faking and stubbing by cre-

ating an additional debugging cost.

• Impacting performance metrics. Early OS prototypes must

be comparable to full-fledged mainstream OSes; this is

especially true for research OSes. Impacting performance

metrics by faking or stubbing would defeat the purpose of

the OS prototype by making it impossible to fairly evaluate

its performance advantage or cost. For instance, stubbing

or faking an expensive and relevant security feature may

provide an unfair advantage to an early OS prototype vs.

a full-fledged OS that implements it.

Non-systematic, trial-and-error-based approaches are es-

pecially prone to fall into stability and performance pitfalls.

Although important, these concerns have been little dis-

cussed by works which rely or relied on faking and stubbing.

Breaking the Status Quo with Loupe. We aim to pro-

pose a systematic and adaptive method to determine which

OS features to implement first. Our goal is to help OS design-

ers transition from no support towards full support to run as

many applications as early as possible.

Overall, dynamic analysis is better suited to the problem

we aim to solve, being able to evaluate the concrete impact

of both stubbing and faking, and providing fine-grain, per-

workload results. The coverage issue of dynamic analysis is

a nonproblem in our context: in early development phases of

an OS, the goal is not to support every feature but rather core

functionalities of target applications [31], which are easily

exercised by standard benchmarks and test suites. Dynamic

analysis is precisely suited because it is adaptive: as sup-

port progresses, workloads can be extended to cover more

and more application features. We are left with two chal-

lenges: the difficulty to 1) scale to numerous applications,

and to 2) detect OS features that can be stubbed, faked, or

partially implemented without impacting stability or per-

formance for relevant application features. As we detail in

§3, we solve the former by designing Loupe to require as

little effort as possible to integrate a new application (at most

writing a Dockerfile and test script), letting us present results

for 100+ applications in §5. We address the latter challenge

by leveraging Linux’s seccomp [23] and ptrace [19] facili-

ties to measure what OS features can be stubbed, faked, or

partially implemented for a given application workload. To

maintain stability and performance metrics for the evalu-

ated workload, Loupe replicates the analysis several times

User-provided
test script

B

Linux Kernel

Loupe

Application

seccomp/ptrace

/proc/<pid>/status
/proc/<pid>/exe

Benchmark or suite

Resource usage statistics

Intercept syscalls and accesses to special
files, fake/stub select syscalls/file accessesD

/proc
/dev

A

Setup sandbox, trace

useC

Loupe Application
Database

E
Upload results &

compare

Figure 1. Loupe architecture diagram.

in containerized environments, and offers a framework for

identifying performance regressions on various generic and

application-specific metrics. We further discuss stability in

Sections 5.2 and 6, and performance impact in Section 5.3.

3 Loupe: Accurate
Run-time Analysis of OS Feature Usage

To accurately quantify what OS features are needed to grad-

ually support a set of popular Linux applications, and to

measure to what extent static and naive dynamic analysis

overestimate these requirements, we built Loupe. Loupe is a
dynamic analysis tool that hooks into each OS feature used

by applications at runtime, analyzing the application’s behav-

ior as it simulates different degrees of compatibility. Unlike

existing naive dynamic analysis tools (e.g., strace), Loupe is

built as a framework specifically meant for OS feature sup-

port analysis. It supports identifying what system calls and

pseudo-files are used by a given application, and determining

which can be faked, stubbed, or partially implemented. Loupe

focuses on reliable and reproducible results, and supports

easy integration into existing build systems and complex

test suite systems. Finally, Loupe can process measurement

data for a set of applications and output targeted OS fea-

ture support plans. We implemented a prototype of Loupe in

2.5K LoC of Python, and 500 LoC of C (used for seccomp and

ptrace hooks). In this section, we summarize the functioning

and architecture of Loupe (§3.1), detail our approach to eval-

uate the success and performance of application runs (§3.2),

and conclude with details on various aspects of Loupe (§3.3).

3.1 Loupe Overview
Using Loupe to measure the OS feature usage of a new ap-

plication is straightforward. Users provide Loupe with 1)

the application binary whose OS feature usage needs to be

measured, and 2) a per-application test script, responsible for
providing external input to the application, and measuring

the performance and success of each run. Loupe operates on

binaries, so there are no language or compiler restrictions on

either the application or the test script. Provided this, Loupe

evaluates the OS feature usage of the application feature by

feature. Each used system call and pseudo-file is tested for

one of twomodes in separate runs: 1) stubbing the system call,

i.e., do not run the system call and return -ENOSYS or 2) faking
it, i.e., return a success code without running the system call.

252

Loupe: Driving the Development of OS Compatibility Layers ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Once all OS features have been tested, a final run confirms

that the analysis performed on a per-feature basis holdswhen

all features are considered. In the event of a failure, users can

use Loupe to alter subsets of system calls to find the culprits,

a process which could be automated in future works.

We now detail the behavior of Loupe for each run, as visu-
alized in Figure 1. Loupe first simultaneously sets up tracing

and sandboxing (A on Figure 1) and starts the application

(B) using the seccomp [23] and ptrace [19] Linux tracing and

interposition facilities. Once the application has been started,

Loupe uses the test script to feed the application with inputs

(e.g., generating client requests for a server application) and

gather performance numbers (C), all the while recording

data on resource usage via /proc (D). Using the hooks set

up in B , Loupe intercepts each system call invoked by the

application, and tests it for one of the two previously de-

scribed modes. At the end of the run, Loupe determines the

success of the application using the return code of the test

script (more in §3.2). Accesses to pseudo-files are hooked

and disabled, stubbed, or faked similarly by catching system

calls from the open family (see §3.3).

In order to maximize the reliability and reproducibility

of the results, each analysis is performed multiple times in

containerized replicas, and the result of the analysis is conser-

vatively updated to take all results into account. The number

of replicas (3 by default) and whether they run in parallel (no
by default) can be configured to suit different applications,

accuracy needs, and available hardware.

Finally, OS developers can specify the system calls sup-

ported by their OS in CSV form, and Loupe will recommend

whichOS features to implement, stub, or fake, to support a set

of applications selected among those measured by the tool.

Loupe will prioritize the list of features to indicate which

should be implemented first in order to support as many

applications, as early as possible. Loupe’s measurements can

optionally be shared in an online database (E).

3.2 Evaluating Success and Performance
Loupe builds on the premise that users are able to describe

a workload that they want to support for a given applica-

tion. Loupe then tells the user which precise set of system

calls they have to support (and how) to be able to run that

workload reliably, i.e., over multiple runs without observable

functional and non-functional issues.

Describing Workloads. Workloads describe the feature

set thatmust be supported in a given application. Loupe users

express workloads in test scripts, responsible for supplying
external input, if required by the application, and detecting

the success of a run.
2
Test scripts may materialize any type

2
Some programs do not require input and determine success by themselves

or via a wrapper script (e.g., test suites). If so, the test script is practically in-
cluded in the application and need not be passed separately. Loupe supports

this. Since this is similar to the general case, we do not further discuss it here.

of workload: simple health checks (e.g., for a web server: can

the application process a simple HTTP query?), benchmarks,

test suites, or even fuzzing. If specific error cases or appli-

cation features must be supported, then the test script must

also exercise them as part of the run. In this paper we explore

health checks, benchmarks, and test suites. Each workload

may be relevant at different stages in the development life cy-

cle of a new OS. Workloads correspond to different levels of

guarantee of application stability; they can be evolved as sup-

port progresses, until complete compatibility can be provided

to ensure stable application behavior in all circumstances.

Defining “Success”. A run is considered successful when

the application terminates and the test script exit code indi-

cates success. Crashes, or unresponsiveness are considered as

generic failure signs. The notion of generic failure can be ex-

tended to unusual resource usage, or even unusual filesystem

or network usage, which Loupe can observe without under-

standing application semantics. Generally however, the no-

tion of success or failure is application-specific and insepara-

ble from the workload itself: e.g., outputs on the standard out-

put/error channels or logs that do not correspond to normal

application behavior, or altered performance (e.g., through-

put, latency, packet loss rate). Application-specific success

criteria must be evaluated by the test script. An example of a

test script for Nginx benchmarked with wrk is shown below:

#!/bin/bash
[...] omitted helpers (including is_failed and grep_req_per_sec)

b=$(wrk http://localhost:8080 -d10s | grep_req_per_sec)
if [[$(is_failed $b $?)]]; then exit 1;
else echo $b; fi

is_failed() is responsible for detecting failures, left out

above for space reasons. When performing a simple health

check, the function verifies that the throughput is non-zero.

We implemented detection of unusual resource usage and

performance in our prototype. Loupe records application

resource usage (maximum resident size and open file de-

scriptors) via /proc and compares results over multiple runs

when stubbing or faking. Similarly, when performing a per-

formance benchmark, test scripts return the relevant perfor-

mance number (which can be any application-specific perfor-

mance metric), and Loupe ensures that the performance does

not incur a statistically significant variation from the full-

fledged baseline. Together, resource usage and performance

checks can provide insights into the impact of stubbing or

faking features, and particularly increase the confidence on

the correctness (or incorrectness) of faking and stubbing. We

further discuss performance and resource usage in §5.3.

3.3 Loupe in Detail
We now discuss various aspects of Loupe that are relevant in

this paper: supporting vectored system calls and pseudo-files,

making Loupe easy to use in many applications, how long

Loupe analyzes take, and sharing analysis results.

253

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Lefeuvre et al.

Vectored System Calls. Identifying OS features at the

granularity of an entire system call is sometimes too coarse,

considering vectored system calls (e.g., ioctl, fnctl) and sys-

tem calls with several functionalities that may be partially

implemented in a compatibility layer (e.g., mmap, or madvise).

In such cases, Loupe can also disable, stub, and fake system

calls based on individual system call parameters, allowing
users to easily explore partial implementations at a fine gran-

ularity. The output is a list of system calls along with their

used sub-features, and whether they can be faked or stubbed.

Pseudo Files. Part of the Linux API is offered through

pseudo-files such as /dev/random. Loupe is able to detect us-

age of such special files by pattern matching the arguments

of certain system calls (e.g., open, openat) against paths (e.g.,

/dev, /proc). Loupe can also fake or stub system calls access-

ing these files, enabling users to track which special files

require an implementation for applications to run.

Testing Framework Integration. Dynamic analysis tools

can be difficult to integrate in application testing frameworks.

Test suites, for instance, may start the application multiple

times, from complex scripts, from different call points [8, 22].

Calling a naive analysis tool like strace requires manual

changes, along with additional logic to gather and merge

results obtained from the multiple runs triggered by the test

suite. Calling the tool on the test suite itself (e.g., strace make

test) is not effective either, as the test suite may call external

tools whose OS feature usage is not part of the application’s.

For instance, the Ruby test suite makes extensive calls to git

to set up test environments; the OS feature requirements of

git should not be included into the application’s. We tackle

this problem with a whitelist system: when run on a wrapper

(e.g., a test suite), users can specify which binaries are that

of the application and should be considered in the analysis.

Loupe then tracks all children processes, checking the binary

path upon exec, to ignore any system call originating from a

binary that does not correspond to the specified one(s). This

allows, for instance, unmodified analysis of test suites run

via make test; Loupe simply executes the Makefile and only

considers system calls executed by the appropriate binary.

Debhelper Integration. To further simplify running Loupe

on many applications, we integrated Loupe into the Deb-

helper [1] Debian package build system. Loupe can build

Debian packages and run on the package’s dh_auto_test [2]

rule which, if provided by the package, executes the target

application’s test suite. Combined with the previous tech-

nique, which Loupe can leverage by listing the package’s

binaries, we can significantly reduce the cost of testing ap-

plications. Running Loupe on the Lighttpd, Memcached, and

webfsd test suites, for instance, is fully automated this way.

Loupe Run Time. The runtime of a full Loupe analysis is

(2+ (2∗𝑡 ∗𝑠)) ∗ ⌈ 𝑟
𝑝
⌉ with: 𝑡 the application workload runtime,

𝑠 the number of distinct system calls (and pseudo-files, if

enabled in the analysis) executed by the application under the

specific workload, 𝑟 the number of replicas, and 𝑝 the number

of replicas executed in parallel. 2+ corresponds to the initial

run to discover executed system calls, and to the final run to

confirm the analysis. 2∗ corresponds to the “stubbing” and

to the “faking” run for each system call. The overall runtime

is therefore dominated by the length and complexity of the

applicationworkload; it varies from about 4minutes for a fast

Nginx health check, to 50 minutes for the Lighttpd test suite,

and 1-1.5 days for the SQLite test suite (by far the largest we

encountered, running millions of tests [8]). These run times

are reasonable: porting cost for a single application often

reach multiple weeks or months in early OS development

stages [45] and, as we expand next, this is a one-time cost.

Sharing Loupe Results. Thanks to the techniques de-

scribed previously, Loupe test scripts are easy to write; 2-30

minutes on average according to the expertise of the user,

most of it spent on understanding how to run and test the

application. The main barrier to running Loupe on a large

number of applications is runtime. Nevertheless, as we de-

scribed previously, the results are final for a fixed build of the

software, its workload, dependencies, kernel, and test script.

To leverage this, we have set up a shared online database that

can be populated and looked up by any individual running

Loupe or interested in its results. Loupe can automatically

submit results to the database along with metadata (E in

Figure 1). We envision that in the long run, this database

will contain results for a wide range of applications, helping

OS and application developers to study OS features usage

patterns, build compatibility layers, and more, without even

the runtime cost mentioned previously.

4 Loupe: OS Feature Support Guide
For space reasons, we set aside pseudo files and focus on

system call support, as it represents the majority of the en-

gineering effort in building compatibility layers [10, 45, 51].

4.1 Examples of Support Plans
We ran Loupe on a total of 116 applications with various

workloads including standard benchmarks (e.g., wrk for web

applications, redis-benchmark). We choose a selection of

representative applications fromOpenBenchmarking.org [16],

as well as various other sources [4, 17, 25]
3
. Leveraging these

measurements, Loupe guides the process of developing a

compatibility layer by giving a prioritized list of system calls

to implement/stub/fake. Specifically, given (1) the state of a

partially Linux-compatible OS in terms of system calls sup-

ported (a simple text file with one line per supported system

call) and (2) a set of target applications to support, Loupe

can output an incremental support plan listing the order in

3
Our artifact includes a list of all applications and support plans for 11 OSes:

https://github.com/unikraft/loupedb/blob/staging/ASPLOS24-supp.pdf

254

https://github.com/unikraft/loupedb/blob/staging/ASPLOS24-supp.pdf

Loupe: Driving the Development of OS Compatibility Layers ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Table 1. Step-by-step support plans for 3 OSes.

Step Implement Stub Fake Support for. . .

Unikraft (commit 7d6707f, supports 174 syscalls)

0 - - - (12 apps)

1 290 273, 218, 230 - + Memcached

2 218 - - + H2O

3 283, 27 186 - + MongoDB

Fuchsia (commit 5d20758, supports 152 syscalls)

0 - - - (10 apps)

1 33 273, 302, 105 - + Lighttpd

2 302 230 - + Memcached

3 - 99, 222, 223 - + HAProxy

4 105 40 128, 99, 27 + Nginx

5 128, 99, 27 - - + MongoDB

Kerla (commit 73a1873, supports 58 syscalls)

0 - - - (4 apps)

1 56, 257, 54 (17 syscalls) 47 + Httpd

2 10 - 302 + Weborf

3 8, 21, 87 - 25 + SQLite

4 232, 233, 302 (9 syscalls) 288, 213 + HAProxy

5 17, 213, 262 95 - + Redis

6 291 105, 106, 116, 293 - + Lighttpd

7 288, 290 32 102 + H2O

8 46 230 - + Memcached

9 105, 18, 53, 106 40 92, 130, 107,

273, 116, 157

+ Nginx

10 104, 107, 108, 102 - - + Webfsd

11 128, 99, 229, 27,

73, 202, 283

131 137 + MongoDB

which missing system calls should be implemented/faked/s-

tubbed in order to enable compatibility with a maximum of

applications as early as possible.

We enabled Loupe to generate support plans for all 116

applications we measured, for 11 OSes under development:

Unikraft [45], Google Fuchsia [5] and Zephyr [30], Kerla [10],

HermiTux [51], Google gVisor [6], Graphene/Gramine [7,

62], FreeBSD Linuxulator [11], Browsix [56], OSv [43], and

Linux nolibc [60]. To illustrate this functionality, we present

here a subset of these results (for space reasons): we consider

recent versions of 3 OSes: Unikraft, Fuchsia and Kerla, and

a target set of 15 popular cloud applications. The support

plans are presented in Table 1. The number of steps to reach

support for all 15 apps is directly linked to the maturity of

the OS: Unikraft for example has initial support for 12 appli-

cations and requires only 3 steps to reach full support, while

Kerla, with initial support for only 4 applications, requires 11

steps. Loupe’s incremental support plans optimize the devel-

opment of compatibility layers by breaking down the effort

into small steps (>80% of which requiring to implement 1-3

system calls), unlocking support for an application after each

step. The support plans in Table 1 target a small set of appli-

cations for space reasons. Full support plans for each of the

11 OSes we target, for all 116 applications in our database, are

larger: 35 steps for Fuchsia, 32 for Unikraft, and 79 for Kerla.

0
10
20
30
40
50
60

0 25 50 75 100 125 150 175 200

A
pp

s
S

up
po

rt
ed

Number of System Calls Implemented by OSv

Loupe Support Plan OSv Developers Naive Dynamic

Figure 2. Evolution of the number of applications and

system calls supported by OSv assuming 1) a support plan

generated with Loupe, 2) organic development based on

git history, 3) measurement with naive dynamic analysis

without stubbing/faking. Higher values indicate more

applications supported for the same effort.

4.2 Engineering Effort Savings
To estimate the engineering effort savings that an OS project

would enjoy while building a compatibility layer with Loupe

rather than in an ad-hoc, organic fashion, we designed the

following experiment: we select a large set of 62 applications

supported by a popular experimental OS, OSv [43], from the

OSv-Apps repository [17]. We then estimate the order in

which these applications were organically supported by the

OS. For that we use git metadata to track the creation date

of the folder corresponding to each app in the repository.

We then derive from the order in which applications were

supported, the organic order in which system calls had to

be implemented by OSv developers. Because stubbing/fak-

ing OS features are well-known practices [40], and because

there are traces of their usage in OSv’s codebase [53], we

assume that OSv developers used stubbing and faking as

much as possible. We can then derive, in chronological order,

the number of system calls that were implemented by OSv

developers, and the evolution of the number of supported

applications. We also compute these numbers for a hypo-

thetical optimized compatibility layer development process

that would be guided by Loupe’s support plan, which would

also take stubbing/faking into account, as well as a naive

approach that would implement every system call traced by

dynamic analysis, without stubbing/faking.

These results are presented on Figure 2. As one can ob-

serve, Loupe would have heavily optimized the process of

implementing OSv’s support for the target application set,

leading to more applications supported earlier and with less

engineering effort vs. our estimation of the organic process

undertaken by OSv’s developers. For example, to support

half (31) of the applications, with Loupe only 37 system calls

need to be implemented, vs. 92 for the organic process. The

naivemethod relying on dynamic analysis without stubbing/-

faking requires even more engineering effort: to reach 31

applications, 142 system calls would need to be implemented.

255

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Lefeuvre et al.

Our method to estimate engineering efforts makes a few

simplifications. The real order in which applications were

supported by OSv is likely not exactly that of folder creation

in the OSv-Apps repository. We repeated the study using the

date of the last commit in each application’s folder to deter-

mine the order; results were similar. The effort to implement

system calls is also variable according to which system call

is targeted: the x-axis in Figure 2 is non-uniform since not all

system calls have the same implementation cost. However,

we believe these results provide a sufficiently solid estima-

tion of the engineering effort reduction that Loupe can bring

to demonstrate its usefulness.

5 Analyzing the Linux API with Loupe
Here we study the Linux API usage results obtained using

Loupe for the 116 applications considered in our study. We

aim to answer the following research questions:

• How important is the accuracy gap between Loupe’smethod

vs naive dynamic analysis (strace) and static analysis?

• When building a Linux compatibility layer, which system

calls must be implemented, and which ones can be com-

monly faked or stubbed? What is the absolute minimum

set of system calls that must be implemented for a test

suite to correctly run?

• What are the most important system calls, i.e., the ones

whose implementation is required by most applications?

• Why can some system calls be faked or stubbed? Does it

impact performance or resource usage metrics?

• Howmuch do the system call requirements of applications

and standard libraries evolve over time?

For space reasons, we concentrate on system calls and set

aside results regarding special files and vectored system calls.

5.1 Analysis Method: Static vs. Dynamic
Loupe vs. Naive Dynamic Analysis. We computed the

API importance of each system call as reported by Loupe and

by naive dynamic analysis. API importance [63] represents

the probability that in our 116 applications data set, a sys-

tem call is required by at least one application in that set.

A system call is defined as required for an application if it

is traced with dynamic analysis, and if it is traced and can

neither be stubbed nor faked with Loupe.

Figure 3 visualizes our results. They show that naive dy-

namic analysis severely overestimates the amount of system

calls required to support applications. Loupe reports a to-

tal of 148 system calls requiring implementation to support

100% of our 116 applications, vs. 180 system calls for a naive

analysis. The 25 most commonly required system calls are

present in more than 80% of the applications with Loupe,

and in less than 50% with naive dynamic analysis.

Loupe vs. Static Analysis. We faced scalability issues

when trying to apply binary- and source-level static analysis

tools to our large data set of 116 applications. There exists

0

20

40

60

80

100

0 50 100 150 200 250

A
P

I I
m

po
rt

an
ce

 [%
]

Nth most important system call

Dynamic (naive)

Dynamic (Loupe)

Figure 3. API importance for dynamic analysis with Loupe

and a naive approach (= no stubbing/faking).

no source-level tool able to identify system calls for all the

relevant programming languages. We also attempted to run

several binary-level tools and experienced a high level of

failures (close to 50%) skewing the results. Hence, we fall

back on selecting a subset of applications from our data set

for comparison between static analysis and Loupe.

We select 7 popular cloud applications that support stan-

dard benchmarks and ship with comprehensive test suites:

Redis, Nginx, Memcached, SQLite, HAProxy, Lighttpd, and

Weborf. To gather results for static analysis we use the source-

and binary-level tools made available by Unikraft [26, 27].

Figure 4 details the amount of system calls identified in each

application by each method. Both static analysis techniques

severely overestimate the number of system calls actually

needed to run the benchmarks and test suites. The minimum

number of system calls identified by Loupe as required for

these applications varies around 20 for benchmarks, and

20-40 for test suites. Both static binary and source analysis

methods report numbers that are generally between 5x and

2x higher. For example, on Redis, binary-level static analysis

identifies 103 system calls vs. 68 dynamically traced ones

from the test suite, and Loupe further indicates that more

than a third of these can be stubbed/faked. This observation

can be generalized to all other applications. Overall these re-

sults show that the effort to provide comprehensive support

of core features and even full test suites is much lower than

suggested by previous work based on static analysis [63].

Figure 5 details which system calls are detected by the

various analysis techniques when applied to the 7 applica-

tions running benchmarks. Once again the overestimation

of static and naive dynamic analysis is clear, compared to the

results obtained with Loupe. Regarding static analysis, oper-

ating on the binary only yields more system calls compared

to targeting the sources. Concerning dynamic analysis, a

non-negligible amount of system calls can be stubbed/faked,

confirming the benefits of Loupe vs. naive dynamic analysis.

We investigate faking/stubbing more in details next.

Insight: Static and naive dynamic analysis both highly

overestimate the engineering effort needed to build a

compatibility layer for a target set of applications.

256

Loupe: Driving the Development of OS Compatibility Layers ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

0
20
40
60
80

100
120

all all suite
bench

all all suite
bench

all all suite
bench

all all suite
bench

all all suite
bench

all all suite
bench

all all suite
bench

N

of
 s

ys
ca

lls
 u

se
d

Stat sourceStat binary Dyn required Dyn stubbed Dyn faked Dyn any

weborfLighttpdHAProxySQLiteMemcachedNginxRedis

Figure 4. Number of system calls statically identified and dynamically traced by Loupe for applications running standard

benchmarks (bench) and test-suites (suite). Traced system calls are broken down into those that can be stubbed, faked, either

faked or stubbed (any), and those that can neither be faked nor stubbed (required).

326318316312
308299296294293292291288
284277275265264

263262257254
235230229226223222217

213208207206204

161160157149
141140138137131130

11611511211010610510310098
9593929188868584817876757473

70675348
403736343029

231813

302

255
234233232228218

203202201
186

158147146145144
143

108107104102999796
908987838280797772

63626160595756555452515049
474645444342413938353332282524

222120191716141211109876543210

0

20

40

60

80

100

A
pp

s
re

qu
iri

ng
 th

e
sy

st
em

 c
al

l [
%

]

(a) Static analysis, binary level.

318312
309308302299296294293291290288
285284280279277275273267265

263262257255254
239237235231230229226223222218

213204203202
186175

161158149146
143141137132131126

1161151121101081071061051041039998
9592918988868583817876757473

615653
47464544403837352625
232019181715

233232228
201

160157

1029796
9087848280797772

636260595755545251504948
4342413933322824

22211614131211109876543210

0

20

40

60

80

100

A
pp

s
re

qu
iri

ng
 th

e
sy

st
em

 c
al

l [
%

]

(b) Static analysis, source level.

318
293291290288

262
231230228223222217

213204
186

157

11611010810710610510410299
959289878483828079787574

6361605553525148
47454443424033322825

2220181676542

302
273

257
233232218

202

158

72
5956545049

4139
2117141312111098310

0

20

40

60

80

100

A
pp

s
re

qu
iri

ng
 th

e
sy

st
em

 c
al

l [
%

]

(c) Dynamic analysis, traced.

318
302293291290288

262
218

213
186

8772
616056555352

45444333
222120181714131211875431

257
233232

158

59545049
41

1090

0

20

40

60

80

100

A
pp

s
re

qu
iri

ng
 th

e
sy

st
em

 c
al

l [
%

]

(d) Loupe’s dynamic analysis, required (excluding stubbed/faked).

Figure 5. System calls identified by static binary, static source, naive dynamic traced (all system calls detected), and Loupe’s

dynamic required (those that cannot be stubbed/faked). Each box represents a Linux system call and its number.

5.2 Resilience to Stubbing and Faking
As visualized in Figure 4, we find that, on average, the pro-

portion of invoked system calls that can be stubbed or faked

is 46% for test suites (ranging from 31% for Nginx to 58% for

Lighttpd), and 60% for benchmarks (from 51% for Lighttpd to

65% for HAProxy). This shows that the effort required to pro-

vide strong support of core features (i.e., those covered by test

suites) for these popular applications is certainly lower than

suggested by previous work, and is even lower when consid-

ering support for benchmarks only (needed for evaluation

in research papers). The difference between Figure 5c and 5d

clarifies this, highlighting which system calls can commonly

be stubbed and faked. We observe broadly two categories:

• Low range system calls (system call ID ~< 150), repre-
senting the majority of system calls detected by all analysis

methods. This is unsurprising as these system calls corre-

spond to core services that have been present in the Linux

feature set for a long time, such as basic network system

calls (bind, accept, etc.).

• Higher range system calls (ID ~> 150), where a small

set of popular system calls are invoked corresponding to

more modern but prominent functionality concerning mul-

tithreading (futex – 202, etc.), scalable I/O (epoll family –

213, 232, 233), as well as new variants of core system calls

(openat – 257, prlimit64 – 302, etc.)

Though system calls from both categories can be stubbed

or faked, system calls with higher numbers are better can-

didates: out of the lower half of used system calls (46 sys-

tem calls with number < 63), 13 system calls can always be

stubbed vs. 30 for the upper half (46 system calls with num-

ber > 63). This is because these map to more recent, generally

less critical functionalities; we expand on this next.

Insight: Though applications may invoke many system

calls, many of them can be stubbed or faked to run

popular workloads.

257

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Lefeuvre et al.

if (getrlimit(RLIMIT_NOFILE, &limit) == -1) {
serverLog(LL_WARNING, "Unable to obtain the current NOFILE limit,"
"assuming 1024 & setting the max clients config accordingly.");
server.maxclients = 1024 - CONFIG_MIN_RESERVED_FDS;

}

(a) Stubbing-resilient Situation (Redis).

if (prctl(PR_SET_KEEPCAPS, 1, 0, 0, 0) == -1) {
ngx_log_error(NGX_LOG_EMERG, cycle->log,
ngx_errno, "prctl(PR_SET_KEEPCAPS, 1) failed");
exit(2); /* fatal */

}

(b) Faking-resilient Situation (Nginx).

Figure 6. Real world code snippets where it is effective to stub (left) and fake (right) system call implementations.

Why are Programs Resilient to Stubbing and Faking?
Applications are able to detect and react to the failure of a

system call. Often, system call failures are non-critical and

programs can take action to circumvent them. These actions

are the enabling factor of system call stubbing. They include,

among others (cf. Figure 5d):

• Ignoring the issue.Not all failures are consequential, and
programs can simply decide to not take further action. For

instance, Redis ignores when sysinfo (99) fails to return

the maximum memory size and when ioctl (16) fails to

return the resident size, as this information is only used

for output to the debugging logs.

• Using other system calls. The system call API is re-

dundant in features: a same means can often be achieved

through different system calls. For instance using mmap (9)

instead of brk (12) – a pattern from the glibc early allocator,

or reallocating mappings with mmap (9) when mremap (25)

fails, as we observe in SQLite.

• Falling back to safe default values. Applications query
the OS for various values to tune their behavior (max

stack size and file descriptor count, processor affinity and

scheduling importance, etc.). When this fails, a safe default

can often be adopted. Figure 6a shows an example with

getrlimit (97) and prlimit64 (302) in Redis. Another exam-

ple is using ioctl (16) to query the terminal width: when

this fails, Redis assumes a safe value of 80 characters.

• Disabling program functionalities. Programs may also

decide to simply disable the functionality that makes use

of the system call; in certain cases, this may not even

have observable consequences. For example, many appli-

cations only make use of connect (42) through the glibc

for the NSCD cache socket [15]. When connect fails, name

caching is simply disabled.

In other cases, programs may interpret the failure conser-

vatively and decide to abort, making stubbing impossible.

Still, in a subset of these cases, programs are overly conserva-

tive and the failure of the system call is in reality non-critical:

if so, faking a successful return value for the system call, with-

out actually doing the work of the system call in question,

will work. Figure 6b presents a concrete example in Nginx,

where prctl (157) fails to force the retaining of capabilities

upon UID transition; in the context of an OS that does not

have a user/kernel separation, like a unikernel, capabilities

make little sense and so it is fine to fake success: faking the

Ap
ps

 c
he

ck
in

g
th

e
sy

st
em

 c
al

l r
et

ur
n

co
de

 [%
]

0 1 2 3 4 5 6 7 8 9 10 11
16 19 20 21 22 23 24 25 26 28 29 30 31
32 33 34 35 37 38 39 40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55 57 58 59 60 62 63

67 72 73 74 75 76 77 79
80 81 82 83 84 85 86 87 88 89 90 91 92 93 95
96 97 98 99 100 101 102 103 104 105 106 107 108 110 111

112 115 116 124
131 132 137 138 141

149 150 151 157
160 161 174 175

179 186 191
201 203 204 206 207

208 209 213 222 223
226 228 229 232 233 234 235

254 255
257 261 263 265 268

275 277 278 280 283 284 285 286
288 291 293 294 295 296 299

308 312 316 318
321 326 332 0 0

20

40

60

80

100

Figure 7. Apps checking system calls return values.

system call here will have strictly no impact on the correct ex-

ecution of the software. Similar examples are get/setgroups

(115-116), or setsid (112)which have, once again, no meaning

in the context of a unikernel. Still, faking OS features may

also result in breaking program functionalities, e.g., pipe2

(293) in Redis (see §5.3). If the functionality is not part of

the target set of application features, faking may remain a

reasonable approach to achieve a first level of compatibility.

Inversely, certain system calls can (almost) never be stubbed

nor faked without breaking core program functionalities.

Though generalization is difficult, these system calls typi-

cally represent fundamental OS features: executing programs

with execve (59), opening and writing to connections with

bind (49), listen (50), socket (41), and writev (20), allocating

memory with mmap (9). We also find vectored system calls

like fcntl (72), motivating our discussion in §5.4.

System Call Return Value Checks. In addition to iden-

tifying system calls issued by applications, we performed a

manual inspection of these applications’ source code in order

to gather ground truth about which system calls had their

return values checked. Is there a link between the presence

or absence of checks, and the ability to stub or fake? Note

that we are interested here in user-written code, so we look

at whether C standard library system calls wrappers – not

system calls themselves – have their return value checked.

We choose manual inspection; building an automated

static analysis method for this task is non-trivial and rather

out of the scope of this paper: some programs directly check

the return value, others store it in a variable which is later

checked, directly or through auxiliary functions, while yet

others rely onmacros to do the checking.We semi-automated

258

Loupe: Driving the Development of OS Compatibility Layers ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

the process by building scripts scanning sources for system

call wrapper invocations and displaying their correspond-

ing location in source files; we then manually checked this

output to determine if the return code was checked or not.

Figure 7 shows, for each system call wrapper, the number

of programs that check its return value. The majority have

their return value checked. Studying the small set of system

calls for which no application has checks, we identify sys-

tem calls that always succeed, e.g., alarm (37), getppid (110),

but also several that can actually fail: getrusage (98), utime

(132), inotify_rm_watch (255) and futimesat (261). For those

invoked and traced by Loupe, we observe that all can be

stubbed/faked for this set of applications. Nevertheless, it

would be incorrect to conclude that the ability to stub and

fake is induced by the absence of checks: inversely, numerous

system calls that are always checked can themselves often

be stubbed/faked, such as ioctl (16), uname (63), or geteuid

(107). There is also a set of system calls for which only some

applications feature checks. These include system calls that

are generally assumed to always succeed (even if they can

fail) such as clock_gettime (228), or freeing resources: e.g.,

close (3), or unlink (87). Generally, these can be stubbed/-

faked only in some applications. Overall, we conclude that

the ability to stub or fake is not a factor of the presence (or

absence) of checks, but rather of the semantics of individual

system calls and applications.

5.3 Impact on Performance and Resource Usage
An important concernwhen stubbing and faking system calls

is whether doing so would have an effect on performance

or resource usage. Both detrimental and positive effects are
undesirable, as unintended improvements on these metrics

may skew comparisons with a full-fledged baseline. To study

the question, we use Loupe’s ability to record performance

and resource usage metrics while performing its analysis. As

described in Section 3.2, Loupe gathers performance metrics

through user-defined scripts, and resource usage informa-

tion (peak file descriptor and memory usage) through /proc.

For the sake of conciseness, we provide detailed results for a

subset of three representative, performance-focused applica-

tions: Nginx (web server), Redis (key-value store), and iPerf3

(TCP benchmark framework). Nginx is benchmarked with

wrk [29] (HTTP requests/s), Redis with redis-benchmark [21]

(SET requests/s), and iPerf3 with an official iPerf client [9]

(TCP throughput). All numbers are provided as averages of

10 runs. Our results are visible in Table 2.

Impact on Performance. For the majority of system calls,

the variation in performance when stubbing or faking is

within the error margin. For the applications considered

here, 3/45 system calls trigger a performance change when

faked or stubbed. For Nginx, stubbing/faking write increases

performance as it prevents writing to access logs [14] (some-

thing that test scripts do not check – access logs are usually

disabled in performance-focused settings as they are written

to once per request). It does not, however, prevent payloads

from beingwritten to, as this is done via writev (which, when

stubbed or faked, prevents Nginx to answer requests cor-

rectly, and is detected by the test script). Still for Nginx, stub-

bing or faking rt_sigsuspend hurts performance, as it turns

the master process’ notification-based behavior into busy-

waiting. None of these alters the well-functioning of Nginx’s

core features as tested by the Loupe test script. Conversely,

in the Redis case, faking futex results in synchronization

issues, manifesting as a performance degradation. This alters

the core functioning of Redis, clearly indicating that faking

futex is not a correct path to follow for compatibility, which

matches intuitive expectations. As for iPerf3, no system call

results in performance degradation when faked or stubbed.

When such variations occur, Loupe notifies the user that

further investigation is needed to understand the implica-

tions (e.g., on stability or scientific soundness) of stubbing or

faking a particular OS feature for a given application. This

further emphasizes the need for a tool like Loupe to avoid

pitfalls which may cause debugging costs down the line, or

skew comparisons with a full-fledged baseline.

Impact on Resource Usage. Similarly to performance, we

find that faking or stubbing most system calls does not result

in statistically significant variations in resource usage. For

the three applications considered, 4/45 system calls result in

memory usage variations, and 3/45 in file descriptor usage

variations, with one (brk) being caused by the libc and thus

common among all three applications.

In the general case, as discussed earlier, system calls that

allocate resources cannot be stubbed or faked: this is the case

for memory allocation services such as mmap (9), but also for

those that allocate file descriptors such as openat (257) (see

Figure 5d). In particular cases, the claim is more nuanced;

alternatives like open (2) do not need to be implemented (e.g.,

because openat is used instead, see Section 5.6). Similarly,

brk can be stubbed or faked in a significant number of cases:

for instance, the program exclusively uses mmap, and the only

usage of brk is in the glibc initialization sequence, which is

itself capable of falling back to mmap if brk does not function

(at the cost of a slight memory usage increase, see Table 2).

Another case is pipe2, which creates pipes at the process’ de-

mand. Stubbing or faking it results in pipes not being created,

which in turn results in an observable reduction in file de-

scriptor count. In the case of Redis, this breaks the persistence

feature (which is often disabled in performance-focused ex-

periments), but not the key-value store’s core functionalities.

The situation is different for APIs that free resources. In

general, munmap and close can be stubbed or faked without

functional impact, though resource usage will increase. For

Redis, faking or stubbing munmap and close leads to a 20%

increase in memory usage, and an 8x increase in open file

descriptors under a redis-benchmark workload (cf. Table 2).

259

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Lefeuvre et al.

Table 2. Performance and resource usage (file descriptors: FD, memory usage) impact of stubbing and faking for Nginx, Redis,

and iPerf3 (=App.lications). Only systems calls with impact outside of the error margin (>3%) in either category are displayed.

“-” means no impact; +X% means X% faster or more resource usage; -X% means X% slower or less resource usage.

App. System Call Perf. Impact FD Usage Mem. Usage Explanations of Stubbing/Faking Impact Breaks. . .

Nginx

write +15% - - Access logs are not written anymore, increasing performance. Access Logging

brk - - +17% Triggers a fallback to mmap in the glibc early allocator. ∅
clone - - +10% Results in master process executing the worker loop. Core functioning

sigsuspend -38% - - Results in master process polling (busy-waiting) for events. ∅

Redis

close - x8 - FDs are not closed anymore. ∅1

munmap - - +19% Regions are not disposed anymore. ∅2

brk - - +2% Triggers a fallback to mmap in the glibc early allocator. ∅

sigprocmask - - -15%

Prevents creation of jemalloc background threads, resulting in

memory being freed synchronously and/or at an earlier point.

∅

futex -66% +94% - Inconsistent synchronization results in incorrect behavior. Core functioning

pipe2 - -25% - Pipes are not created anymore, resulting in less FDs. Persistence

iPerf3 brk - - +11% Triggers a fallback to mmap in the glibc early allocator. ∅
1
Within the maximum number of FD limits, core functioning is altered beyond this point.

2
Within the limits of available memory.

Still, although these features can be stubbed or faked without

sacrificing stability (as long as resources suffice), we note

that the incentives to do so are lower than for other API ele-

ments; if the algorithm was developed to allocate resources,

it should not be a problem to develop one that frees them.

Lastly, similarly to performance, variations in resource

usage turn out to be good indicators of instability caused

by stubbing or faking. In the case of Nginx, faking clone re-

sults in the master process executing the worker event loop,

which itself manifests as an increase in memory usage (likely

because resources are left dangling). Although functional in

practice, it is not a reliable path to take for compatibility and

meaningful performance comparison. In the case of Redis,

faking futex results in inconsistent synchronization, which

itself translates into an increased number of allocated file

descriptors (see Table 2).

Beyond system calls that (de-)allocate resources, and those

that indicate underlying instability, we identify two more

classes of system calls which may impact resource usage (or

performance):

• Optimizing system calls: by giving semantic indications

to the kernel regarding e.g., memory management policies,

system calls such as madvise [12] should influence perfor-

mance and resource usage. This behavior is not visible

when faking/stubbing in Table 2: kernel hints are used

rather sporadically in applications, and for those that use

them (e.g., Redis), the kernel did not perform actions that

impacted our metrics. Impact may be observable in other

settings, e.g., multi-process scenarios.

• System Limit Setters/Getters: by getting/setting system

defaults (e.g., max stack size, number of FDs), getter/set-

ter system calls like prlimit64 (or part of ioctl) may also

result in resource usage or performance variations. For

instance, with system defaults different from the ones in

Table 2, stubbing prlimit64 in Redis results in 30% lower

memory usage under a redis-benchmarkworkload because

the libc (stack size) and Redis (FD limits) default to values

conservatively lower than the system limits.

Impact on Stubbing and Faking Policy. Overall, we
stress the importance of evaluating the impact of stubbing

and faking on performance metrics as part of the process

of deciding what to support and how. Though most system

calls do not impact performance metrics, some do: when the

underlying reason is instability, the OS feature should never

be faked; otherwise, whether or not to stub or fake should be

an explicit factor of the experimental setup and expectations

on the OS prototype. It is critical that the (positive or nega-

tive) impact of stubbing and faking must not be mistaken for

that of the system’s design. Overall, we encourage authors

of future systems research works to explicitly list features

that they stub or fake for reproducibility and future analysis.

Insight: Stubbing/Faking does not impact performance

and resource usage in the general case. Still, there are

edge cases which may or may not indicate correctness

issues. Impact on either metric must call for special care

when stubbing/faking.

5.4 Partial Implementation of System Calls
In the previous sections, we considered system calls as mono-

lithic API elements. This consideration shows its limits when

investigating vectored system calls (e.g., ioctl) or complex

system calls like mmap (usable for memory allocation and file

mapping, two very different purposes). To clarify this point,

we use Loupe to determine the precise set of sub-system call

features applications require.

Our insights are twofold. First, applications execute sur-

prisingly few features from complex or vectored system calls.

For example, almost all applications require arch_prctl (158)

(see Figure 5d). However, they are far from requiring a full im-

plementation: in fact, in all applications that we considered,

260

Loupe: Driving the Development of OS Compatibility Layers ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Table 3. Nginx 0.3.19 system call usage with different glibc

versions. System calls that vary because of the architecture

(32/64-bit) are in italics; other variations are in bold.

glibc 2.3.2 / 32-bit (48 system calls) glibc 2.31 / 64-bit (51 system calls)

_llseek, accept, access, bind, brk,
clone, close, connect, epoll_create,

fcntl64, epoll_ctl, epoll_wait,

execve, exit_group, dup2, fstat64,
geteuid32, mkdir,mmap2, setuid32,
old_mmap, setgroups32, uname,
open, prctl, pread, pwrite, read,
rt_sigaction, rt_sigprocmask,

rt_sigsuspend, set_thread_area,
setgid32, setsid, setsockopt, recv,
socket, socketpair, stat64, bind,

munmap, umask, getpid, getrlimit,

ioctl, write, writev, gettimeofday,

listen

read, write, close, stat, fstat, lstat,
lseek, brk, rt_sigaction, mmap,
ioctl, rt_sigprocmask pread64,
setsockopt, writev, access, send-

file, socket, munmap, accept,

connect, epoll_wait, mprotect,
recvfrom, listen, socketpair,

pwrite64, prlimit64, epoll_create,

clone,execve, fcntl, mkdir, umask,

setuid, setgid, geteuid, setsid,

rt_sigsuspend, dup2, setgroups,
_sysctl, prctl, arch_prctl, getpid,
set_tid_address, exit_group,

epoll_ctl, openat, set_robust_list

this system call was exclusively called by the libc, which

requires one single feature (ARCH_SET_FS, out of 6 in total)

related to thread local storage setup. The situation is simi-

lar for prlimit64 (302), required by many applications: out

of 16 features, only 3 are used, RLIMIT_CORE, _NOFILE, and

_STACK, the latter one being used almost exclusively as part

of the libc initialization. This is also the case for ioctl (16):

with a benchmark load, Redis, weborf, and h2o use one sin-

gle feature (TCGETS), Nginx two (FIONBIO and FIOASYNC), and

Lighttpd none. All of them can be stubbed.

Second, when looking at required features of system calls,

we find that certain system calls such as fcntl typically ex-

hibit a mix of required and fakeable/stubable features, and

the required set is typically common among applications.

For instance, F_SETFL is required to put file descriptors in

non-blocking mode in all applications except Nginx, a critical

operation for most codebases. On the other hand, F_SETFD

is widely executed across applications but can always be

stubbed as it is used to enable close-on-exec on file descrip-

tors, a non-critical operation. In these cases, taking a look at

the required system calls at the granularity of a system call

would make the situation appear worse than it is in practice.

Insight: Several complex system calls do not require a full

implementation to support a large number of applications.

5.5 Stability of System Call Usage Over Time
Once an OS prototype supports an application, how likely

is it that, as the program evolves over time, additional or

different system calls will be required, breaking the initial

support? Here we study the stability of system call usage by

applications and libcs.

Evolution: C Standard Library. We first study the libc,

from which most system calls invocations generally origi-

nate. We compiled Nginx v0.3.19 against an old version of

0
10
20
30
40
50
60

'10 '21 '06 '21 '06 '21N

of
 s

ys
te

m
 c

al
ls

 u
se

d

Dynamic required
Dynamic stubbed

Dynamic faked
Dynamic any

httpd (Apache)NginxRedis

Figure 8. System call usage and capacity to be stubbed/faked

for recent (2021) and older (2005-2010) applications releases.

glibc (2.3.2, from 2003) and a modern one (2.31, from 2020).

Since we were unable to run Nginx 0.3.19 with glibc 2.3.2 in

64-bit mode, we compiled and run this configuration in 32-bit.

This is likely due to these versions featuring unstable AMD64

support (the first AMD64 CPUs were released in 2003 [42]).

The results in Table 3 show that the number of used system

calls is more or less unchanged, 48 vs 51. Moreover, we see

that most of the change in system call usage is caused by the

deprecation of old system calls. Still, there is some evolution

in the types of system calls invoked, which we classify into

two categories. First, the recent libc uses a different version

of some system calls due to a change of architecture (e.g., it

uses pread64 instead of pread). Second, the recent libc uses

additional system calls, e.g., arch_prctl to set up TLS. Setting

aside the issue of supporting a new architecture (orthogonal

to compatibility), we assume that it is the second category

that would require supporting effort for updating a given

compatibility layer as applications evolve. However, we con-

sider this effort to be low: we only count 8 new system calls

in 17 years for this libc/application combination.

Evolution: Application. We are now interested to see

how the system call usage of an application changes over

the years. For this experiment, we used a modern glibc/com-

piler. We explore the difference in system call usage of Nginx,

Apache and Redis through the years and list the results in

Figure 8. We observe that, although the number of Linux

system calls has increased, all applications are using roughly

the same amount of system calls; the number of system calls

that can be stubbed or faked also remains almost unchanged.

In all, we find the usage of system calls by applications and

libcs to be fairly stable over time. This is further encourage-

ment to OS prototype developers: once you provide support

for an application, you are likely to be able to keep it with

minimal work for a long while.

Insight: Application and libc system call usage patterns

tend to be stable over time: support is a one-time effort.

261

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Lefeuvre et al.

5.6 C Library Impact on System Call Usage
Typical applications perform the majority of their system call

invocations through the C standard library (libc). Bypassing

the libc using direct system call invocation happens only

for functionalities rarely called by user code (e.g., futex) or

newer system calls for which libcs do not provide a wrapper:

we counted around 51 system calls (58 including removed/u-

nimplemented system calls) that do not have a wrapper as of

glibc 2.33. In this case, applications wishing to invoke them

use the syscall function. Setting aside these special cases,

we find that the libc implementation greatly influences the

system call API usage of applications. This is due to two

main factors: (1) the libc initialization sequence and (2) the

choice of system call alternatives (e.g., openat vs. open).

Libc Initialization Sequence. The initialization sequence
is the libc code executed from the program entry point until

the user’s main function is invoked. The system calls invoked

by that code will be by construction present in any binary

linked against that libc and constitute the minimum set of

system calls an OS should implement to support this libc. To

study initialization sequences, we recorded the system call

usage of a trivial application printing "Hello, world!" across

two libcs, glibc (version 2.28) and musl (version 1.2.2), for

a dynamically- and a statically-linked executable. Results

in Table 4 show that the number and types of system calls

executed vary: glibc’s initialization sequence invokes for dy-

namically compiled binaries 2.5x more system calls vs. musl,

and 1.8x more for statically compiled programs. The system

calls invoked also change: glibc is not a strict superset of

musl and out of 18 system calls in total, only 6 are common

to both libcs for dynamic, 3 for static (and 3 overall).

System Call Alternatives. Some discrepancies are due

to the libcs choosing different system call alternatives to per-

form the same task. For example, glibc uses write for printf,

vs. writev for musl. Similarly, musl uses ioctl to check that

the TTY is writable, while glibc uses fstat. Finally, glibc

uses openat, read, mmap, and mprotect to map the libc into

the address space, an operation that musl achieves by embed-

ding the libc into the linker itself, avoiding these system calls

entirely. Other differences are caused by libc-specific initial-

ization and debugging features. For example, even in single-

threaded programs, musl will call set_tid_address during

TLS initialization, something that glibc does not. Glibc, on

the other hand, uses uname to ensure that the kernel is recent

enough, readlink to expand $ORIGINwith statically compiled

binaries, and access for a debugging feature; none of these

used by musl’s initialization sequence.

Insight: The choice of libc and linking type strongly

influences system call usage: as much as 4.5x fewer

system calls between dynamic glibc and static musl.

Table 4. System call API usage of a hello world application

across glibc (2.28) and musl (1.2.2). Apart from exit_group

and write/writev, this set corresponds to the libc initializa-

tion sequence. Differing system calls are in bold.

glibc musl

28 system calls (dynamic binary) 11 system calls (dynamic binary)
execve (1x), brk (3x), arch_prctl (1x),

exit_group (1x), access (1x), openat
(2x), fstat (3x), mmap (7x), close (2x),

read (1x), mprotect (4x), munmap
(1x), write (1x)

execve (1x), brk (2x), arch_prctl

(1x), exit_group (1x), writev (1x),

mmap (1x), mprotect (2x), ioctl
(1x), set_tid_address (1x)

11 system calls (static binary) 6 system calls (static binary)
execve (1x), arch_prctl (1x), exit_group

(1x), brk (4x), fstat (1x), write (1x),

uname (1x), readlink (1x)

execve (1x), arch_prctl (1x),

exit_group (1x), writev (1x),

ioctl (1x), set_tid_address (1x)

6 Discussion: Pitfalls & Future Works
As discussed throughout this work, there are pitfalls to devel-

oping OS compatibility layers with dynamic analysis, stub-

bing, faking, and partial support techniques.

Impact on Stability. Dynamic analysis, stubbing, faking,

and partial support techniques, bring the concern of stabil-

ity: do we trade off correctness to reduce porting time? Loupe
assumes that users are able to evaluate the functionality

of application features they aim to support by specifying

a set of tests (§3.2). The tool ensures that this set of tests

can be passed reliably, over multiple runs, when applying

stubbing, faking, and partial support techniques. Loupe can

also ensure that performance, resource usage, and any other

metric, remains stable (§5.3). Under this assumption, stability

issues outside users’ target feature range are not in the prob-

lem scope of Loupe, or our study. Still, perfect correctness

cannot be guaranteed, and compatibility bugs may hide in

incomplete or buggy tests, varying test environments, etc.

We believe that these are reasonable trade-offs to be made

in transitional development stages of a new OS.

Impact on Evaluation Metrics. Assuming stability, an-

other concern remains: do we trade off (or simply influence)
performance, resource usage, or any other metric for porting
time? This is most relevant as early OS prototypes must be

able to compare, in a sound manner, properties with full-

fledged baseline OSes. We show that, although the majority

of system calls do not influence performance metrics when

stubbed, faked, or partially supported, there are pitfalls: even
when reliably passing tests, these techniques can result in vis-

ible performance or resource usage variations (§5.3). Loupe

improves on the state of the art, which does not consider

this problem, by evaluating these costs systematically and

early, to provide strong evidence that achieved support does

not impact chosen metrics. Still, it remains impossible to

formally guarantee that these metrics will be unaffected in

all cases. We believe that this too constitutes a reasonable

trade-off in development stages.

262

Loupe: Driving the Development of OS Compatibility Layers ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Overall, dynamic analysis, stubbing, faking, and partial

support should not be seen as end-goals for production-ready

compatibility, but as a transitional, “necessary evil” in de-

velopment phases. The takeaway of this paper should not

be that most of the system call API is irrelevant, or that

static analysis is impertinent in engineering compatibility

layers; each corresponds to distinct life cycle phases in the

development of new OS. As we show, static analysis is not

appropriate in earlier stages, however its output should de-

cisively be a target in later stages of development, and full

support should eventually come to achieve high levels of

correctness assurance.

Looking forward, we plan to improve Loupe with sup-

port for other analysis metrics, such as identifying standard

application-specific logs and error message formats, or net-

work and file system usage statistics, to better detect silent

faults and effects of stubbing, faking, and partial support

techniques.We believe that there remainmany interesting re-

search opportunities in application analysis for compatibility

that should be explored in future works. Future research av-

enues include exploring speeding up the analysis by transfer-

ring knowledge across applications, and generally using ma-

chine learning techniques to identify patterns over the data

set, at scale, and generating application-specific workloads.

7 Related Work
OS Compatibility Layers. Many research and prototype

OSes have implemented compatibility layers to transparently

support legacy software. An early example [31] presents a

compatibility layer for Linux applications implemented in

the K42 [44] OS. Similarly to our work, the authors note that

to be widely adopted, an OS must provide good support for

existing applications, and that emulating the Linux API is the

best way to achieve this goal without requiring modification

of target applications. In another study [40], researchers pro-

pose a POSIX compatibility layer for the Embassies [39] sys-

tem. This work presents the construction of the compatibility

layer, which is realized in a fully ad-hoc way. As we demon-

strate, this process can be highly optimized with Loupe. Still,

the authors make some observations similar to ours, in par-

ticular the fact that some system calls are “failure-oblivious”

(i.e., they can be stubbed) and others are “neutered” (they

can be faked). Other works proposed compatibility layers for

new monolithic [10, 11, 30], libOS [6, 43, 45, 46, 51, 62, 64] or

micro-kernels [5, 20], web browsers [56], for running appli-

cations within the Linux kernel [60], as well as various OS

interoperability layers for existing kernels [11, 18, 28, 50, 61].

To the best of our knowledge, all these compatibility layers

have been developed in an organic way.

Libc-Based Compatibility Layers. Some works [13, 43]

approach compatibility at the libc level, instead of the system

call API. Though most system calls are performed through

the libc, prior works have shown that interfacing at the libc

level leads to weaker degrees of compatibility [52] because

many programs do issue system calls outside the libc (500+

ELF Debian 10 executables fall into that category [52]). Thus,

we focus on compatibility at the system call level.

Linux & POSIX APIs Studies. Past work studied the us-

age of the Linux [63] and POSIX [32] APIs by applications.

Tsai et al. [63] use binary static analysis to measure the sys-

tem calls and pseudo files required by a large set of binaries

from the Ubuntu 15.04 archive. Even for the most minimal

Ubuntu installation, the study reports that 224 system calls,

208 ioctl/prctl/fcntl codes and 100+ pseudo files require

support. Our results demonstrate that static binary analysis

is overly pessimistic. Using dynamic analysis, Loupe shows

that the amount of OS features required to run standard

benchmarks or even full test suites is actually much lower.

Another study [32] leverages both static and dynamic

analysis to measure applications’ POSIX API usage. Unlike

this work, the authors’ goal is not to determine and opti-

mize compatibility efforts, but to study the evolution of the

POSIX interface and identify emerging/missing abstractions.

Though the study provides valuable insights for building

a compatibility layer at the POSIX (i.e., libc) level [43, 46],

past studies showed that the Linux API (mainly system calls)

provided a higher degree of compatibility [52]: the authors

themselves [32] note that many applications (e.g., Go apps)

circumvent POSIX to use OS specific APIs.

8 Conclusion
We propose Loupe, an efficient method to determine and

prioritize OS features new compatibility layers should imple-

ment to provide support for as many applications as possible,

as early as possible. Applying Loupe to 100+ applications, we

provide examples of support plans, demonstrate high engi-

neering effort savings, and study our measurements in depth.

A significant number of system calls identified as needed by

previous works are actually not required for those applica-

tions to run. These results bring amessage of hope to the level

of compatibility a new OS must provide in order to support

mainstream applications, and should provide encouragement

to ongoing and future research OS development efforts.

Acknowledgments
We thank the anonymous reviewers and our shepherd, Don-

ald E. Porter, for their insights. This work was funded by a

studentship from NEC Labs Europe, a Microsoft Research

PhD Fellowship, UK’s EPSRC grants EP/V012134/1 (UniFaaS),

EP/V000225/1 (SCorCH), and the EPSRC/Innovate UK grant

EP/X015610/1 (FlexCap), as well as EU H2020 grants 825377

(UNICORE), 871793 (ACCORDION) and 758815 (CORNET).

UPB authors were supported by VMWare gift funding.

263

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Lefeuvre et al.

A Artifact Appendix
A.1 Abstract
This artifact contains the source code of Loupe, the proof-

of concept of our OS feature analysis method, along with

the OS feature usage data generated for the paper. The goal

of this artifact is to allow readers to understand and re-use

Loupe in their experimental OS development workflows.

A.2 Artifact Check-List (Meta-Information)
• Program: the Loupe feature analysis method, along with various

scripts used in the paper.

• Binary: Mostly Python and Bash scripts, C seccomp/ptrace
core automatically built from source.

• Data set: Generated with Loupe over the course of its develop-

ment, and provided separately from the code of Loupe.

• Run-time environment: Tested on GNU/Linux Debian 12.

Should work on any Debian-based distribution. Installation of

Docker, git, Python 3, python-git is needed.

• Hardware: Any x86-64 CPU – Loupe does not not have custom

hardware requirements. We recommend (but do not require) >8

CPU cores to obtain stable performance numbers.

• Output: OS feature usage data; Loupe support plans.

• Experiments: E1-E3, all described under §A.6.

• How much disk space required (approximately)?: <10GB,

excluding dependencies.Most of the disk space is taken byDocker

containers.

• How much time is needed to prepare workflow (approxi-
mately)?: <20 minutes, depending on internet link speed, most

of it spent installing dependencies.

• How much time is needed to complete experiments (ap-
proximately)?: About 1 hour, incl. 40 minutes of computation.

• Publicly available?: Yes.

• Code licenses (if publicly available)?: BSD-3-Clause.

• Data licenses (if publicly available)?: CC-BY.

• Workflow framework used?: Docker, scripts.

• Archived (provide DOI)?: 10.5281/zenodo.8386116

A.3 Description
A.3.1 How to access. The latest version of the Loupe

source code
4
and data set

5
can found on GitHub. Alterna-

tively, individual releases can be downloaded from our Zen-

odo archive
6
.

A.3.2 Hardware dependencies. Anymodern x86-64 CPU

is suitable. Loupe does not require custom hardware. We rec-

ommend (but do not require) >8 CPU cores to obtain stable

performance numbers.

A.3.3 Software dependencies. Loupe was developed and
tested on GNU/Linux Debian 12, but should work on any

Debian-based distribution. Loupe is Linux-specific and re-

quires a kernel that supports seccomp and ptrace (this should

match all stable kernels). Installation of Docker, Python

4https://github.com/unikraft/loupe
5https://github.com/unikraft/loupedb
6https://doi.org/10.5281/zenodo.8386116

3, python-git is needed and documented below. Loupe is

known to work with at least Python 3.10.5 and python-git
3.1.27.

A.3.4 Data sets. The Loupe data set is provided separately
from the source code as documented above. It consists of

the Loupe database, a human-readable, text-based database

based on a git repository with a custom layout.

A.4 Installation
We will first install dependencies required to build and run

Loupe. This may take up to 20 minutes.

Step 1: install Docker, e.g., following official instructions
7
.

Then, install git, Python 3, and python-git:

$ sudo apt install python3-pip git
$ pip3 install gitpython

Step 2: clone our AE repositories with appropriate tags:

$ git clone -b asplos24-ae-v1 \
https://github.com/unikraft/loupe.git

$ git clone -b asplos24-ae-v1 \
https://github.com/unikraft/loupedb.git

Step 3: build dependencies and base Docker containers:

$ pushd loupe
$ make all
$ popd

The system is now set-up to run Loupe.

A.5 Experiment workflow
This artifact appendix describes three experiments (E1-E3)

which allow evaluators to assess that the artifact is consistent,

exercisable, and complete, i.e., it allows users to generate the

main results of our paper:

• Main result 1: fine-grain OS feature usage data. This result
is evaluated by experiment E1, showing how Loupe can

be used to generate it, and reproduce existing results.

• Main result 2: OS support plans. This result is evaluated
by experiment E2.

• Main result 3: stubbing and faking performance impact.
This result is evaluated by experiment E3.

This artifact does not cover reproducing all the paper’s

results; re-generating all results for the 100+ applications

covered by Loupe (particularly test suites) would require an

involvement in time and resources that goes beyond what

can be expected from artifact evaluators.

A.6 Evaluation and expected results
A.6.1 E1: Gathering OS feature usage (Nginx wrk).

Time Cost: 25 minutes, incl. 12-15 minutes computation.

7https://docs.docker.com/engine/install/

264

https://github.com/unikraft/loupe
https://github.com/unikraft/loupedb
https://doi.org/10.5281/zenodo.8386116
https://docs.docker.com/engine/install/

Loupe: Driving the Development of OS Compatibility Layers ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Experiment Result: We will generate OS feature usage

data for Nginx under a wrk workload, showing which fea-

tures can be stubbed and/or faked, and which ones must be

implemented. We will show how to reproduce these results.

Step 1: Write a test script using wrk (nginx-test.sh), and
create a Loupe container (Dockerfile.nginx):

$ cd loupe
$ cp -r examples/E1/* .
$ # we encourage readers to inspect and understand the files
$ # they just copied (nginx-test.sh and Dockerfile.nginx)

Step 2: Run the Loupe analysis. When asked whether or

not to create a new Loupe database (Create it?), select y:

$./loupe generate -b -db ../loupedb-ae -a "nginx" \
-w "wrk" -d ./Dockerfile.nginx

Step 3: Commit the analysis data:

$ pushd ../loupedb-ae
$ git add nginx && git commit -m "Nginx wrk analysis."
$ popd

Step 4: Retrieve the analysis data and manually inspect it:

$./loupe search --show-usage -db ../loupedb -a "nginx" \
-w benchmark

$ # this will return the results of the analysis; it should be
$ # roughly in line with the results of Figure 4, application
$ # Nginx, bar "bench": ~19-20 required, and about 50 in total.

Step 5: Reproduce the same run:

$ cd ../loupedb-ae/nginx/benchmark-wrk/${hash}/
$ # the hash should be 126e629dc544b4695f12ed602f6902aa
$../../../../loupe/loupe generate -b \

-db ../../../../loupedb-ae -a "nginx" \
-w "wrk" -d ./Dockerfile.nginx

Step 6: Check that the results are the same:

$ git status
$ # this should report no differences apart from cmd.txt
$ # and explore.logs (which are just log files)
$ cd ../../../../ # go back to the root directory

A.6.2 E2: Generating OS support plans with Loupe.

Time Cost: 1-5 minutes of human time.

Experiment Result: Wewill generate an OS support plan

using Loupe and the pre-existing Loupe database (loupedb).

Step 1: Generate the support plan for the Kerla OS, and

manually inspect it.

$ cd loupe && ./loupe search -db ../loupedb --guide-support \
../loupedb/Kerla.syscalls \
--applications "*" --workloads bench

$ # This will not match Table 1 because the set of apps
$ # is different. Just make sure it makes sense.
$ cd ../ # go back to the root directory

A.6.3 E3: Evaluating the Performance Impact of Stub-
bing and Faking.

Time Cost: 30 minutes, incl. 25 minutes computation.

Experiment Result: We will evaluate the performance

and resource usage impact of stubbing and faking on Nginx

under a wrk benchmark using Loupe.

Step 1: Build the Loupe Nginx Docker container:

$ cd loupe && git clean -xdf
$ cp -r examples/E3/* . # we encourage readers to inspect
$ # and understand the files they just copied
$./loupe generate -b -db ../loupedb -a "nginx" -w "wrk" \

-d ./Dockerfile.nginx --only-build-docker

Step 2: Start the Loupe Nginx Docker container:

$ docker run -it docker.io/library/nginx-loupe bash

Step 3: Run the performance analysis and inspect results:

$ /root/explore.py --perf-analysis -t /root/nginx-test.sh \
-b /root/nginx/objs/nginx -- -p /root/nginx -g "daemon off;"

$ # inspect results, should be roughly similar to Table 2
$ # dissimilarities may be due to an unstable experimental
$ # setup - for the paper results we CPU pinned, averaged, etc.

A.7 Experiment customization
We encourage readers to run a new application of their own

choice in the Loupe framework. The artifact provides rather

thorough documentation to achieve this (see §A.8).

A.8 Notes
Loupe ships with additional documentation, all described

in the main README.md and provided in the documentation

folder
8
. The documentation expands on the structure of the

artifact, on the interpretation of performance metrics, as well

as on Loupe Dockerfiles and database. Overall, we recom-

mend readers to read the main README.md before installing

or using Loupe as it contains more documentation (and pos-

sibly more up-to-date documentation) than this appendix.

A.9 Methodology
Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-review-
badging

• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html

References
[1] debhelper(7) — linux manual page. https://www.man7.org/linux/man-

pages/man7/debhelper.7.html, accessed 08/17/23.

[2] dh_auto_test - automatically runs a package’s test suites. https:
//manpages.debian.org/testing/debhelper/dh_auto_test.1.en.html,
accessed 08/17/23.

[3] errno - number of last error (including a description of -ENOSYS).
https://www.man7.org/linux/man-pages/man3/errno.3.html, accessed
08/01/23.

[4] Github – Rumprun packages: Ready-made packages of

software for running on the Rumprun unikernel. https:
//github.com/rumpkernel/rumprun-packages, accessed 08/01/23.

[5] Google Fuchsia website. https://fuchsia.dev/, accessed 08/01/23.

8https://github.com/unikraft/loupe/tree/staging/doc

265

https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html
https://www.man7.org/linux/man-pages/man7/debhelper.7.html
https://www.man7.org/linux/man-pages/man7/debhelper.7.html
https://manpages.debian.org/testing/debhelper/dh_auto_test.1.en.html
https://manpages.debian.org/testing/debhelper/dh_auto_test.1.en.html
https://www.man7.org/linux/man-pages/man3/errno.3.html
https://github.com/rumpkernel/rumprun-packages
https://github.com/rumpkernel/rumprun-packages
https://fuchsia.dev/
https://github.com/unikraft/loupe/tree/staging/doc

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Lefeuvre et al.

[6] Google Gvisor Github webpage. https://github.com/google/gvisor,
accessed 05/03/2018.

[7] Gramine: a library OS for unmodified applications. https:
//gramineproject.io, accessed 08/10/23.

[8] How sqlite is tested. https://www.sqlite.org/testing.html, accessed
08/17/23.

[9] iPerf - the ultimate speed test tool for TCP, UDP and SCTP.

https://iperf.fr/iperf-doc.php, accessed 08/01/23.

[10] Kerla GitHub repository: A new Operating System kernel with Linux

binary compatibility written in Rust. https://github.com/nuta/kerla,
accessed 08/01/23.

[11] Linuxulator (Linux emulation): running unmodified Linux binaries un-

der FreeBSD. https://wiki.freebsd.org/Linuxulator, accessed 08/01/23.

[12] madvise(2) — Linux manual page. https://man7.org/linux/man-
pages/man2/madvise.2.html, accessed 08/01/23.

[13] Newlib: a c library intended for use on embedded systems.

https://sourceware.org/newlib/, accessed 12/12/2017.

[14] Nginx docs: Configuring logging. https://docs.nginx.com/nginx/
admin-guide/monitoring/logging/, accessed 08/17/23.

[15] nscd - name service cache daemon. https://www.man7.org/linux/man-
pages/man8/nscd.8.html, accessed 08/17/23.

[16] OpenBenchmarking.org software repository. https:
//openbenchmarking.org/, accessed 08/01/23.

[17] OSv application repository. https://github.com/cloudius-systems/osv-
apps, accessed 08/01/23.

[18] Proton (Valve Software) GitHub repository. https://github.com/
ValveSoftware/Proton, accessed 08/01/23.

[19] ptrace(2) - process trace. https://man7.org/linux/man-
pages/man2/ptrace.2.html, accessed 07/31/2023.

[20] ReactOS Github page: A free Windows-compatible Operating System.

https://github.com/reactos/reactos, accessed 08/01/23.

[21] Redis benchmark: Using the redis-benchmark utility on a Redis

server. https://redis.io/docs/management/optimization/benchmarks/,
accessed 08/01/23.

[22] Redis test suite. https://github.com/redis/redis/tree/unstable/tests,
accessed 08/17/23.

[23] seccomp(2) - operate on secure computing state of the process.

https://man7.org/linux/man-pages/man2/seccomp.2.html, accessed
07/31/2023.

[24] strace - linux syscall tracer. https://strace.io/, accessed 08/17/23.

[25] Unikraft application repository: Applications supported by the

Unikraft libOS. https://github.com/orgs/unikraft/repositories,
accessed 08/01/23.

[26] Unikraft static binary analysis tool (part of the Loupe artifact). https:
//github.com/unikraft/loupe/tree/staging/src/static-binary-analyser,
accessed 08/17/23.

[27] Unikraft static source analysis tool (part of the Loupe artifact). https:
//github.com/unikraft/loupe/tree/staging/src/static-source-analyser,
accessed 08/17/23.

[28] Wine HQ – a compatibility layer to run Windows applications on

POSIX. https://www.winehq.org/about, accessed 08/01/23.

[29] wrk - a HTTP benchmarking tool. https://github.com/wg/wrk,
accessed 08/01/23.

[30] Zephyr Project: A proven RTOS ecosystem. https://www.
zephyrproject.org/, accessed 08/01/23.

[31] Jonathan Appavoo, Marc Auslander, Dilma Da Silva, David Edelsohn,

Orran Krieger, Michal Ostrowski, Bryan Rosenburg, Robert Wis-

niewski, and Jimi Xenidis. Providing a Linux API on the scalable K42

kernel. In Proceedings of the 2003 USENIX Annual Technical Conference,
FREENIX Track, ATC’03, 2003.

[32] Vaggelis Atlidakis, Jeremy Andrus, Roxana Geambasu, Dimitris

Mitropoulos, and Jason Nieh. POSIX abstractions in modern operating

systems: The old, the new, and the missing. In Proceedings of the 11th
European Conference on Computer Systems, EuroSys’16, 2016.

[33] Antonio Barbalace, Robert Lyerly, Christopher Jelesnianski, Anthony

Carno, Ho-Ren Chuang, Vincent Legout, and Binoy Ravindran. Break-

ing the boundaries in heterogeneous-ISA datacenters. In Proceedings
of the 22nd International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS’17, 2017.

[34] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris,

Rebecca Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach,

and Akhilesh Singhania. The multikernel: a new OS architecture for

scalable multicore systems. In Proceedings of the ACM SIGOPS 22nd
symposium on Operating systems principles, SOSP’09, 2009.

[35] Alexander Bulekov, Rasoul Jahanshahi, and Manuel Egele. Saphire:

Sandboxing PHP applications with tailored system call allowlists.

In Proceedings of the 30th USENIX Security Symposium, USENIX

Security’21, 2021.

[36] Claudio Canella, Mario Werner, Daniel Gruss, and Michael Schwarz.

Automating seccomp filter generation for Linux applications. In

Proceedings of the 2021 on Cloud Computing Security Workshop,
CCSW’21, 2021.

[37] Nicholas DeMarinis, Kent Williams-King, Di Jin, Rodrigo Fonseca, and

Vasileios P. Kemerlis. Sysfilter: Automated system call filtering for com-

modity software. In Proceedings of the 23rd International Symposium
on Research in Attacks, Intrusions and Defenses, RAID’20, 2020.

[38] Seyedhamed Ghavamnia, Tapti Palit, Azzedine Benameur, and

Michalis Polychronakis. Confine: Automated system call policy

generation for container attack surface reduction. In Proceedings of
the 23rd International Symposium on Research in Attacks, Intrusions
and Defenses, RAID’20, 2020.

[39] Jon Howell, Bryan Parno, and John R. Douceur. Embassies: Radically

refactoring the web. In Proceedings of the 10th USENIX Symposium
on Networked Systems Design and Implementation, NSDI’13, 2013.

[40] Jon Howell, Bryan Parno, and John R. Douceur. How to run POSIX

apps in a minimal picoprocess. In Proceedings of the 2013 USENIX
Annual Technical Conference, ATC’13, 2013.

[41] Antti Kantee. The rise and fall of the operating system. USENIX login,
40(5), 2015.

[42] C.N. Keltcher, K.J. McGrath, A. Ahmed, and P. Conway. The AMD

Opteron processor for multiprocessor servers. IEEE Micro, 23(2), 2003.
[43] Avi Kivity, Dor Laor Glauber Costa, and Pekka Enberg. OSv -

optimizing the operating system for virtual machines. In Proceedings
of the 2014 USENIX Annual Technical Conference, ATC’14, 2014.

[44] Orran Krieger, Marc Auslander, Bryan Rosenburg, Robert W. Wis-

niewski, Jimi Xenidis, Dilma Da Silva, Michal Ostrowski, Jonathan

Appavoo, Maria Butrico, Mark Mergen, et al. K42: building a complete

operating system. In Proceedings of the 1st European Conference on
Computer Systems, EuroSys’06, 2006.

[45] Simon Kuenzer, Vlad-Andrei Bădoiu, Hugo Lefeuvre, Sharan

Santhanam, Alexander Jung, Gaulthier Gain, Cyril Soldani, Costin

Lupu, S, tefan Teodorescu, Costi Răducanu, Cristian Banu, Laurent

Mathy, Răzvan Deaconescu, Costin Raiciu, and Felipe Huici. Unikraft:

Fast, specialized unikernels the easy way. In Proceedings of the 16th
European Conference on Computer Systems, EuroSys’21, 2021.

[46] Hsuan-Chi Kuo, Dan Williams, Ricardo Koller, and Sibin Mohan. A

Linux in Unikernel Clothing. In Proceedings of the 15th European
Conference on Computer Systems, EuroSys’20, 2020.

[47] Hugo Lefeuvre, Gaulthier Gain, Daniel Dinca, Alexander Jung, Simon

Kuenzer, Vlad-Andrei Badoiu, Razvan Deaconescu, Laurent Mathy,

Costin Raiciu, Pierre Olivier, and Felipe Huici. Unikraft and the

coming of age of unikernels. USENIX; login, 2021.
[48] A. Madhavapeddy, R. Mortier, C. Rotsos, DJ. Scott, B. Singh, T. Gaza-

gnaire, S. Smith, S. Hand, and J. Crowcroft. Unikernels: library

operating systems for the cloud. In Proceedings of the 18th International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS’13, 2013.

266

https://github.com/google/gvisor
https://gramineproject.io
https://gramineproject.io
https://www.sqlite.org/testing.html
https://iperf.fr/iperf-doc.php
https://github.com/nuta/kerla
https://wiki.freebsd.org/Linuxulator
https://man7.org/linux/man-pages/man2/madvise.2.html
https://man7.org/linux/man-pages/man2/madvise.2.html
https://sourceware.org/newlib/
https://docs.nginx.com/nginx/admin-guide/monitoring/logging/
https://docs.nginx.com/nginx/admin-guide/monitoring/logging/
https://www.man7.org/linux/man-pages/man8/nscd.8.html
https://www.man7.org/linux/man-pages/man8/nscd.8.html
https://openbenchmarking.org/
https://openbenchmarking.org/
https://github.com/cloudius-systems/osv-apps
https://github.com/cloudius-systems/osv-apps
https://github.com/ValveSoftware/Proton
https://github.com/ValveSoftware/Proton
https://man7.org/linux/man-pages/man2/ptrace.2.html
https://man7.org/linux/man-pages/man2/ptrace.2.html
https://github.com/reactos/reactos
https://redis.io/docs/management/optimization/benchmarks/
https://github.com/redis/redis/tree/unstable/tests
https://man7.org/linux/man-pages/man2/seccomp.2.html
https://strace.io/
https://github.com/orgs/unikraft/repositories
https://github.com/unikraft/loupe/tree/staging/src/static-binary-analyser
https://github.com/unikraft/loupe/tree/staging/src/static-binary-analyser
https://github.com/unikraft/loupe/tree/staging/src/static-source-analyser
https://github.com/unikraft/loupe/tree/staging/src/static-source-analyser
https://www.winehq.org/about
https://github.com/wg/wrk
https://www.zephyrproject.org/
https://www.zephyrproject.org/

Loupe: Driving the Development of OS Compatibility Layers ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

[49] Joao Martins, Mohamed Ahmed, Costin Raiciu, Vladimir Olteanu,

Michio Honda, Roberto Bifulco, and Felipe Huici. Clickos and the art

of network function virtualization. In Proceedings of the 11th USENIX
Conference on Networked Systems Design and Implementation, NSDI’14,
2014.

[50] Christopher McLellan. Docker desktop for Mac - sup-

port for running x86-64 binaries with Rosetta 2, 2022.

https://github.com/docker/roadmap/issues/384, accessed 08/01/23.

[51] Pierre Olivier, Daniel Chiba, Stefan Lankes, Changwoo Min, and

Binoy Ravindran. A binary-compatible unikernel. In Proceedings of
the 15th ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments, VEE’19, 2019.

[52] Pierre Olivier, Hugo Lefeuvre, Daniel Chiba, Stefan Lankes, Chang-

woo Min, and Binoy Ravindran. A syscall-level binary-compatible

unikernel. IEEE Transactions on Computers, 2021.
[53] OSv Contributors. Stub of io_setup, 2021.

https://github.com/cloudius-systems/osv/blob/
317d259ab5b0b49a1a114bc837147746e471abc9/core/libaio.cc#L17,
accessed 08/21/2022.

[54] Shankara Pailoor, Xinyu Wang, Hovav Shacham, and Isil Dillig.

Automated policy synthesis for system call sandboxing. Proceedings
of the ACM on Programming Languages, 4(OOPSLA), 2020.

[55] Donald E. Porter, Silas Boyd-Wickizer, Jon Howell, Reuben Olinsky,

and Galen C. Hunt. Rethinking the Library OS from the top down. In

Proceedings of the 16th International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS’11, 2011.

[56] Bobby Powers, John Vilk, and Emery D. Berger. Browsix: Bridging

the gap between UNIX and the browser. In Proceedings of the 22nd
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS’17, 2017.

[57] FL. Rawson. Experience with the development of a microkernel-based,

multiserver operating system. In Proceedings of the 6th Workshop on
Hot Topics in Operating Systems, 1997.

[58] Ali Raza, Thomas Unger, Matthew Boyd, Eric B Munson, Parul Sohal,

Ulrich Drepper, Richard Jones, Daniel Bristot De Oliveira, Larry

Woodman, Renato Mancuso, Jonathan Appavoo, and Orran Krieger.

Unikernel Linux (UKL). In Proceedings of the 18th European Conference
on Computer Systems, EuroSys’23, 2023.

[59] Martin Rinard, Cristian Cadar, Daniel Dumitran, Daniel M. Roy,

Tudor Leu, and William S. Beebee. Enhancing server availability

and security through failure-oblivious computing. In Proceedings
of the 6th Conference on Symposium on Operating Systems Design &
Implementation, OSDI’04, 2004.

[60] Willy Tarreau. Nolibc: a minimal C-library replacement shipped with

the kernel, 2023. https://lwn.net/Articles/920158/.
[61] Deepu Thomas and Seth Juarez. Windows Subsystem for

Linux (WSL) overview, 2016. https://learn.microsoft.com/en-
us/archive/blogs/wsl/windows-subsystem-for-linux-overview.

[62] Chia-Che Tsai, Kumar Saurabh Arora, Nehal Bandi, Bhushan Jain,

William Jannen, Jitin John, Harry A. Kalodner, Vrushali Kulkarni,

Daniela Oliveira, and Donald E. Porter. Cooperation and security

isolation of library OSes for multi-process applications. In Proceedings
of the 9th European Conference on Computer Systems, EuroSys’14, 2014.

[63] Chia-Che Tsai, Bhushan Jain, Nafees Ahmed Abdul, and Donald E.

Porter. A study of modern Linux API usage and compatibility: what to

support when you’re supporting. In Proceedings of the 11th European
Conference on Computer Systems, EuroSys’16, 2016.

[64] Chia-Che Tsai, Donald E. Porter, and Mona Vij. Graphene-SGX: A

practical library OS for unmodified applications on SGX. In Proceedings
of the 2017 USENIX Annual Technical Conference, ATC’17, 2017.

[65] D. Wagner and R. Dean. Intrusion detection via static analysis. In

Proceedings of the 2001 IEEE Symposium on Security and Privacy.,
S&P’01, 2000.

267

https://github.com/docker/roadmap/issues/384
https://github.com/cloudius-systems/osv/blob/317d259ab5b0b49a1a114bc837147746e471abc9/core/libaio.cc#L17
https://github.com/cloudius-systems/osv/blob/317d259ab5b0b49a1a114bc837147746e471abc9/core/libaio.cc#L17
https://lwn.net/Articles/920158/
https://learn.microsoft.com/en-us/archive/blogs/wsl/windows-subsystem-for-linux-overview
https://learn.microsoft.com/en-us/archive/blogs/wsl/windows-subsystem-for-linux-overview

