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Abstract
OS design is traditionally heavily intertwinedwith protection
mechanisms. OSes statically commit to one or a combina-
tion of (1) hardware isolation, (2) runtime checking, and (3)
software verification early at design time. Changes after de-
ployment require major refactoring; as such, they are rare
and costly. In this paper, we argue that this strategy is at odds
with recent hardware and software trends: protections break
(Meltdown), hardware becomes heterogeneous (Memory Pro-
tection Keys, CHERI), and multiple mechanisms can now be
used for the same task (software hardening, verification, HW
isolation, etc). In short, the choice of isolation strategy and
primitives should be postponed to deployment time.

We present FlexOS, a novel,modularOS designwhose com-
partmentalization and protection profile can seamlessly be
tailored towards a specific application or use-case at build
time. FlexOS offers a language to describe components’ se-
curity needs/behavior, and to automatically derive from it a
compartmentalization strategy.We implement an early proto-
type of FlexOS that can automatically generate a large array
of different OSes implementing different security strategies.

CCS Concepts
• Software and its engineering→ Operating systems; •
Security and privacy→Operating systems security.
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1 Introduction
To create secure and fast software, programmers can use three
main approaches offering various trade-offs between human
effort, safety guarantees and runtime performance: software
verification, runtime checking and hardware isolation. To-
day’s software statically commits to one or a combination of
these approaches.At design time, systems are built around the
protection ensuing from these mechanisms; changing them
after deployment is rare and costly.

In operating systems, the current landscape (illustrated on
Figure 1) broadly consists of micro-kernels [24, 29], which
favor hardware protection and verification over performance,
monolithic kernels [8], which choose privilege separation
and address spaces to isolate apps, but assume all kernel code
is trusted, and single-address-space OSes (SASOSes), which
attempt to bring isolationwithin the address space [10, 23, 32],
or dump all protection formaximum performance [30, 36, 43].
OS implementations are heavily interlinked with the pro-

tection mechanisms they rely upon, making changes to them
difficult to implement. For instance, removing user/kernel
separation [37] requires a lot of engineering effort, as does
breaking down a process into multiple address spaces for
isolation purposes [27]. This is the case despite the fact that
alternative approaches can be used to provide the same guar-
antees. First, verification and software hardening (SH) such
as SFI can help ensure memory isolation between separate
components even if they run in the same address space, thus
avoiding the need for hardware isolation [19, 52]. Second,
hardware isolation, SH and runtime property checking can
be used to check that certain correctness properties hold (e.g.
when specified as pre and post conditions), thus relieving
the user from needing to prove code correctness statically
against a specification [47]. Third, both software verification
and protection domains can be used to ensure (a form of)
control-flow integrity between components, guaranteeing
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Figure 1: Design space of OS kernels.

that code execution starts only at well-defined entry points,
without needing software runtime checks [53].

The rigid use of safety primitives in modern OSes poses
a number of problems. First, when the protection offered by
hardware primitives breaks down (e.g. Meltdown), it is dif-
ficult to decide how they should be replaced, and with what
costs. In caseswheremultiplemechanisms can be used for the
same task (e.g. SH and verification), choosing the primitive
that provides the best performance depends on many factors
such as the hardware, the workload, etc., and should ideally
be postponed to deployment time, not design time. Locking
the design to a certain isolation primitive will result in poor
performance in many scenarios.

Second, computerhardware isbecomingheterogeneous[54]
and certain primitives are hardware-dependent (e.g. Intel
Memory Protection Keys – MPK [12]). When running the
same software on different hardware, how can weminimize
the porting effort while preserving safety?

Software modularization should, in principle, provide bet-
ter robustness and security. Most software, including OSes,
integratesmodules from different sources, with various levels
of trust. Unfortunately, the isolation primitives assumed by
themodule designers affect theway inwhich amodule can be
used, limiting its usefulness. Take, for instance, a formally ver-
ified OS subsystem: how does one go about embedding it into
a larger project while still maintaining its safety properties?
Clearly, if one embeds this component alongside untrusted
C code, its verified properties may not hold in practice.
This leads us to the following research problem:How can

we enable users to easily and safely switch between different
isolation andprotection primitives at deployment time, avoiding
the lock-in that characterizes the status-quo?
Our answer is FlexOS, a novel, modular OS design whose

compartmentalization and protection profile can easily and
cost-efficiently be tailored towards a specific application or
use-case at build time, as opposed to design time as it is the
case today. To that aim, we extend the Library OSmodel (Li-
bOS) and augment its capacity to be specialized towards a
given use case, historically done for performance [18, 26],
towards the security dimension.

With FlexOS, the user can decide at build timewhich of the
fine-grainedOScomponents shouldbe compartmentalized, as
well as how to instantiate isolation and protection primitives

for each compartment. FlexOS allows developers to easily
explore the trade-offs than can be achieved with different
isolation technologies and granularities, and to select the best
security/performance profile for their use case. Concretely,
our research contributions are:

• Thedesignand implementationofFlexOS, anovel frame-
work for effortlessly investigating performance vs. se-
curity trade-offs in operating systems.

• The identification of fundamental primitives that are
needed in order to provide isolation and protection via
a wide range of software and hardware-based mecha-
nisms.

• A preliminary evaluation showing how FlexOS can be
used to explore a wide array of security/performance
profiles for two apps: iperf and Redis.

2 Design Overview
The goal of FlexOS is to allow developers and OS researchers
to easily inspect and select different points in the security
vs. performance trade-off space. Exploring such a space is far
from trivial, and our aim is also to automate such exploration.
Here, various strategies could be followed:

• Given a performance target and a set of predefined com-
partments (e.g. isolate the application and the network
stack from everything else), find the combination of
isolation primitives that maximizes security within a
certain performance budget.

• Given a set of safety requirements (e.g. no buffer over-
flows), find a compliant instantiation that yields the
best performance or that can run on the largest number
of devices (based on the availability of hardware-based
mechanisms).

Both objectives above have in common the need to describe
the security attainedbyeachmechanism, and the implications
of running one software component in the same compartment
as another one.

We base our design as an extension of the LibOSmodel [18],
since LibOSes are by nature divided into fine-grained compo-
nents/libraries. Our approach consists in supporting a set of
hardware and software hardening mechanisms, and comple-
menting the API of each such library with FlexOSmetadata
specifying 1) the expected memory access behavior of other
components running in the same compartment as the library
for its safety properties to hold; 2) the areas of memory this
library can access in normal but also adversarial operation
(for example if the library’s execution flow is hijacked); and
3) API specific information.

Such metadata are created manually for each library by its
developer, a one-time and relatively loweffort for the library’s
author. The metadata purpose is to capture the effects upon
the overall safety properties of running this library along-
side other libraries in the same or in a different compartment.
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For instance, here is an example describing FlexOS’ formally
verified scheduler that we have implemented in Dafny [31]:

[Memory access] Read(Own,Shared); Write(Own,Shared)
[Call] alloc::malloc, alloc::free
[API] thread_add (. . . ); thread_rm(. . . ); yield(. . . )
[Requires] *(Read,Own), *(Write,Shared),

*(Call, thread_add), *. . .

The description concisely specifies that (1) the library ac-
cesses its own memory and a segment shared with other
libraries (e.g. its callers), that (2) it only uses functions pro-
vided by the memory allocator, (3) which functions it exposes
as its API, and that (4) it expects other libraries to be able to
read its own memory (but not write to it) and be able to write
in shared memory.

Consider now a component written in an unsafe language,
such as C, that is deemed potentially unsafe (perhaps due to
variable-length writes to a buffer that cannot be proven safe
statically); its description will read:

[Memory access] Read(*); Write(*)
[Call] *

This specification simplyoutlines that the control/dataflow
of this component may be hijacked at runtime, resulting in
arbitrary code execution/memory access. Since there is no
Requires clause, this means other libraries should not be
prevented fromwriting to memory owned by this library.

Giventwolibrariesandtheirmetadata,wenowhaveenough
information to automatically decide whether they can run in
the same compartment. If both libraries have no Requires
clause, theanswer isyes. If anyof the librarieshas suchclauses,
each clause can be automatically checked in the presence of
the other library. In our example above, for its verified prop-
erties to hold, the scheduler expects others to only read, not
write, to its own memory. The C component, on the other
hand, could write to all memory it has access to (in its com-
partment) - thus breaking the expectation: as a result, these
two libraries cannot be run in the same compartment.
Armed with information about pair-wise incompatibility,

selecting the smallest number of compartments in a FlexOS
image can be reduced to the classical graph coloring problem:
each library is a vertex, and an edge connects two incompat-
ible libraries. Graph coloring assigns the smallest number of
colors to the vertices of a graph such that no two adjacent ver-
tices have the same color. For each color, we will instantiate a
separate compartment that holds the libraries that have been
painted with that color. In the worst case where all libraries
have conflicts, each library will be instantiated in its own
compartment.
When to Enable SH? In certain cases, it is preferable from
a performance or deployment point of view to use runtime

checks (CFI [2],DFI [3, 9], etc., grouped in the rest of this paper
under the SH acronym) instead of multiple compartments –
possibly only for a subset of the system/compartments.
To automate the process of selecting SHmechanisms, we

first create inFlexOSamachine-readabledescriptionof the im-
pact each SH technique has on the safety behavior of a library.
This is a transformation that takes as input a library defini-
tion and outputs a changed definition describing the safety
behavior of the library when the SH technique is enabled.
For control-flow integrity, the transformation is simple:

libraries that previously declared Call(*) are transformed
into Call(func. list)where the list of functions is popu-
lated via a standard control-flow analysis of the library. For
data-flow integrity, the transformation is similar: if the data
flow graph of a library shows that all its writes are to its own
data, Writes(*)will be transformed to Writes(Own); other
SH techniques are handled similarly. To enumerate feasible
deployments with SH, we proceed as follows: 1) for each li-
brary that writes to all memory, enable DFI / ASAN; 2) for
each library that can execute arbitrary code, enable CFI.
The result of this step will be a list of libraries that have

two versions: one with SH, and one without. We then iterate
through all combinations of such library versions and run the
graph coloring algorithm described above. This will result
in as many colorings as there are possible combinations of
libraries. Consider our example above: the unsafe C library
will have two versions now, one with SH and one without
SH.When put together with the scheduler in the same image,
the SH version will be able to share a compartment with the
scheduler, while the original version will require a separate
compartment.
Handling pre and post conditions. The approach we took
tohandlingmemoryaccess requirementscouldalsobeapplied
to pre-conditions that certainAPI functionsmay request to be
truewhen called. For instance, in the case of the scheduler, one
of thread_add’s preconditions is to not add a thread that has
already been added. In such cases, FlexOS could be extended
to automatically check whether the pre-conditions always
hold on call (based on a static analysis of the call graph); if
they don’t, runtime checks should be added to ensure they do
hold. In our current prototype, we add these checks manually
in our scheduler code; in future work we intend to explore
ways of deriving this automatically.
FlexOS Architecture. FlexOS is based on a modular LibOS
(Unikraft, aunikernel framework[30])andallowsfined-grained
OS software modules to be placed in compartments (see Fig-
ure 2). Note that the granularity of such modules is much
more fine-grained than that of traditional microkernel/multi-
server OSes. Compartments in FlexOS are separated via gates
which aremade up of theAPI each compartment exposes. The
gates also implement isolation between compartments, and
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Figure 2: FlexOS architecture. Gates isolate an arbi-
trary number of compartments using a wide set of
software and hardware-based securitymechanisms.

can leverage different isolation mechanisms depending on
the available hardware (e.g. protection keys [12, 14], capabil-
ities [55]) or software (e.g. CFI or ASAN).
Gates are instantiated at link time based on the require-

ments provided by the user or automated tools. Implementa-
tions vary from cheap function calls all the way to expensive
RPC across VM boundaries. Depending on the chosen gates,
the compartments will be running in the same protection
domain or in different ones. Further, each compartment can
be individually hardened by using SHwithout code changes.

FlexOS leverages Unikraft’s micro-library granularity (e.g.
a scheduler, a memory allocator or a message queue are all
micro-libs) but replaces each micro-lib’s standard function-
call based API with call gates. In the porting process, develop-
ers replace cross-micro-libs function callswith gate placehold-
ers. Once replaced by a particular implementation in the link-
ing stage, gates take care of executing the function call in the
foreign compartment, and of copying the return value back.
Programmers do not need knowledge of the internal function-
ing of gates; all gates are exposed by the same, simple API:

rc = listen(sockfd, 5); // before porting
uk_gate_r(rc, listen, sockfd, 5); // after porting

Programmers also annotate data shared with other micro-
libs so that they are allocated in shared areas according to the
compartmentalization graph.
FlexOS’s build system extends Unikraft’s to allow speci-

fying howmany compartments the resulting image should
have, how they should be isolated, and whether SH tech-
niques should be applied to one or multiple of these. Using
this information, FlexOS’s builder will generate the required
protection domains (one per compartment) and replace the
call gate placeholders with the relevant code. For libraries in
the samecompartment, itwill replace the call gateswithdirect
function calls. For inter-compartment crossings, it will use
the appropriate gate for switching protection domains: in our
example in Figure 2, we have three separate compartments.
Using these basic primitives, a developer will be able to

easily experiment with various isolation techniques to find
the fastest implementation for a given task. We show, via
experiments in §4, how we can create several networking

images that do not trust the networking stack, with vastly
different performance and security characteristics.

3 Implementation Prototype

To demonstrate its practicality, we implement a prototype of
FlexOS on top of Unikraft v0.4 [49] in 1.5K LoC. Gate support
is provided by two isolation mechanisms, referred to as isola-
tion backends: Intel MPK and VM (EPT) isolation. SH support
is available with CFI, ASAN, etc. We ported a subset of the
Unikraftmicro-libraries to FlexOS,manually created compart-
ment specifications and identified shared data to showcase
the trade-offs FlexOS enables; implementing the automated
approach to defining compartments is left as future work.
Note that although we focused on virtualized environments
for this prototype, nothing fundamentally precludes FlexOS
to run as a bare-metal OS.
Intel MPK Backend. Intel MPK is a mechanism providing
low-overhead intra-address space memory isolation [1, 5, 46]
at the granularity of a page. Our MPK backend places each
compartment in its ownMPKmemory region, including static
memory,heap, stack, andTLS.MPKpermissions for the thread
executing on a core are held in a register named PKRU. Since
any compartment can modify its value, the MPK backend has
to prevent such unauthorized writes; it can do so via static
analysis [50], runtime checks [22] or page-table sealing [36].

In addition, the MPK backend introduces isolation require-
ments for the scheduler and the Memory Manager (MM): the
scheduler holds the value of the PKRU for threads that are not
currently running, and so itsmemory is as critical as thePKRU
register itself. TheMM’s domain includes the page-table hold-
ing themapping between pages and protection domains. This
implies that the scheduler andMM have to be trusted when
using MPK. In our implementation we use a provably correct
scheduler implemented in Dafny, and we can also use SH to
harden schedulers/MMs implemented in C.
Our MPK backend supports two types of gates. In the

shared-stack gate, heap and static memory are isolated and
only shared data is accessible from all compartments in dedi-
catedheap/staticmemorysegments.Threadstacksare located
in a domain shared by all compartments. This gate is similar
to ERIM’s [50]. With the switched stack gate, the heap, stacks,
and static memory are all isolated. There is one stack per
thread per compartment and the stack is switched at domain
boundaries. Parameters are copied to the target domain stack,
and shared stack data is placed on a shared heap. This gate is
similar to HODOR’s [22].
VM-based Backend. Many works use virtualization to sup-
port isolation within a kernel [33, 40, 41, 56]. VM-based iso-
lation provides strong security guarantees and is widely sup-
ported, at the cost of higher overhead.
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Component C SH: all but C SH: C only

Scheduler 496Mb/s 2.90 Gb/s

Network stack 631Mb/s 2.76 Gb/s

LibC 1.47Gb/s 1.25 Gb/s

Rest of the system 1.08Gb/s 2.50 Gb/s

Entire system 2.94Gb/s (baseline) 489 Mb/s

Table 1: iperf throughput with SH on
various components.

SET GET SET GET SET GET
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

No SH
SH global alloc
SH local alloc
Verified Sched

Payload: 5B 50B 500B

R
ed

is
 M

re
q/

s

Figure 4: Redis throughput for var-
ious SH configs and our verified
scheduler.

Our toolchain generates one VM image per compartment.
Images contain the minimum set of micro-libraries neces-
sary to run the VM independently (platform code, memory
allocator, scheduler), along with a thin RPC implementation
based on inter-VM notifications and a shared area of memory
for shared heap/static data. It is mapped in all compartments
(VMs) at an identical address so that pointers to/in shared
structures remain valid. Compartments do not share a single
address space anymore, and run on different vCPUs. Hence,
each compartmentneeds its ownmemory allocator and sched-
uler, so these have to be trusted. Our VM-based isolation back-
end is currently based on Xen, with KVM support underway.
SH Support. FlexOS’s SH support is modular: we can apply
hardening mechanisms per compartment (not system-wide),
allowing for fine-grained protection and performance trade-
offs. For example it is possible to apply SH only to compo-
nents that interact directly with the outside world, such as
the network stack. Our implementation supports KASAN,
Stack protector and UBSAN on GCC, and CFI and SafeStack
under clang. A key requirement for SH is the ability to have
a separate memory allocator per compartment: as many SH
techniques instrument malloc, using a single global allocator
would result in the entire system paying the cost of the instru-
mented allocator. FlexOS can be configured to use separate
memory allocators per compartment to avoid such overheads
when only a subset of compartments are hardened.

4 Preliminary Results

We studied the performance impact brought by a number
of FlexOS’ configurations for two apps: an iperf server and
Redis. We aim to confirm that FlexOS allows easy exploration
of a wide design space of security/performance trade-offs:
each configuration is obtained by setting a few options and
recompiling the LibOS against the app sources. Both apps
were manually ported to the prototype, though most of this
process should be easy to automate. Experiments were run
on a Xeon Silver 4110 (2.1 GHz), with KVM and Xen.
Safe iperf. In our first test, we created an iperf server where
an untrusted network stack is isolated from the rest of the OS
image.We test three configs: 1) two compartments withMPK,
one for the stack and one for rest of the OS; 2) separate VMs

for the two compartments; 3) A single compartment, with SH
applied only to the network stack.
Performance results as measured by an iperf client are

shown in Fig. 3. At the server side, we vary the size of the
buffer passed to recv. With SH and MPK, for small buffers
there is a non negligible slowdown (2x to 3x). However, these
solutions catch up quickly to the baseline, yielding similar
performance starting at 1KB buffer size. Xen’s numbers are
lower due to Unikraft not being optimized for this hypervisor;
still, we observe that the payload needs to be larger for theVM
backend to catch up to the baseline, 32KB, due to increased
domain switching costs. These results show that the perfor-
mance impact of various protection mechanisms depends
on the workload, so locking into a protection mechanism at
design time is suboptimal.
iperf: Fine-Grained SH. FlexOS’ modular design allows us
to enable/disable SHatmicro-library granularity.We ran iperf
with a variable number of FlexOS’ components running with
SH: the network stack, the scheduler, the standard C library
(LibC), and the rest of the system including iperf itself.

Results are in Table 1. The performance impact strongly
depends on the component running with SH: the scheduler
brings a 1% overhead while the LibC has a 2.3x slowdown.
Interestingly, the slowdown with SH for the network stack is
low (6%). SH for the entire system has a 6x slowdown, demon-
strating the benefits of FlexOS’ flexibility, useful in scenarios
where components have variable levels of trust and variable
performance impact when protected with SH.
Redis: IsolationStrategies. WeranRedis invarious scenar-
ios. We defined 4 compartmentalization models: {NW stack,
rest of the system} (NW only), {NW stack, scheduler,
rest of the system} (NW/sched/rest), {NW stack + sche-
duler, rest of the system} (NW and sched/rest), and a
baseline with no isolation. These demonstrate FlexOS’ capac-
ity to seamlessly manage various trust models. For MPKwe
ran both the shared and switched stack versions.

The results are in Figure 5. The isolation overhead depends
on the number of compartments and how they communicate.
Isolating only the network stack brings on average a 17% slow-
down, while also isolating the scheduler brings a 1.4x (shared
stack) and 2.25x (switched stack) slowdown – an increase due
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to the stack switch overhead. This points to frequent com-
munication between the scheduler and the network stack,
making intensive use of wait queues through semaphores.
However, putting the network stack and the scheduler in the
same compartment does not increase performance: this is due
to semaphores being implemented in another compartment
(LibC). This brings the need for further compartmentalization
or redesign of the components. Similar to iperf, the isolation
overhead drops significantly when the request size increases.
Redis: SH. We ran Redis enabling SH for the network stack
with 1) a global allocator for the entire system and 2) a dedi-
cated local allocator for the network stack and another for the
rest of the system. The results are in Figure 4. With a global
allocator, the slowdown from running the network stackwith
SH is on average 1.45x. FlexOS’ capacity to easily setup a local
allocator for the network stack allows us to reduce that over-
head to a 1.24x slowdown. Overall, the results for Redis show
that FlexOScanmanage awide rangeof security/performance
requirements scenarios.
Verified Scheduler. We developed a verified cooperative
scheduler written in Dafny [31]; the scheduler’s safety is
given by pre- and post-conditions that are statically proven
to hold by Dafny. We generate C++ code from the scheduler
and integrate it in FlexOS by adding glue code. How can we
embed this safely alongside untrusted code? To protect the
scheduler’s memory from external writes we can either apply
SH to the rest of the unikernel or use MPK. To check that
pre-conditions hold on call we integrate the checks in the glue
code, and disable interrupts. In future work we will generate
glue code automatically.
The context switch latency of our verified scheduler is

218.6ns, 3x slower than the C scheduler (76.6ns). This is fairly
high, but Fig. 4 shows that the verified scheduler’s overhead
over the C one is always below 6% for Redis.

5 Open Questions
Decoupling OSes isolation and safety primitives from their
fundamental design brings a number of challenges.
How to minimize porting effort? FlexOS requires port-
ing, not only for kernel-internal libraries, but also for exter-
nal user-space libraries. This porting process usually boils
down to identifying shared data and handling indirect cross-
component calls, a common effort among isolation frame-
works [21, 38]. While it is a one-time, reasonably inexpensive

effort, we recognize that it might hinder the adoption of our
approach [43]. Further, manual approaches are not fail proof
and can result, for example in over- or under-sharing data. To
address these issues, automated porting techniques, mostly
explored at the user-space level [6, 35, 48], can be explored.
Another element of the porting process is the writing of

per-library metadata. These metadata are used by the design
space exploration tool to automatically derive a compartmen-
talization strategy. The tool is then able to guarantee that
properties hold according to the specified characteristics of
each component. The resulting kernel is guaranteed to be cor-
rect as long as the metadata themselves are correct. But who
verifies the specification/metadata? The process of writing
metadata is error prone, andmethods for (semi-)automatically
generating them should be explored.
Isolationaloneisnotenough. Traditional systemcallAPIs
are designed from the outset as a trust boundary. Not only
are they copy-based and carefully check function arguments,
they are also designed as to avoid more subtle privilege esca-
lation vulnerabilities, e.g. confused deputies. For such APIs,
swapping the isolationmechanism (e.g., fromstandard system
calls to MPK domain switching) is relatively straightforward.
On the other hand, when the API was previously developed
without a trust model (as is the case with all kernel internal
APIs, but also userland library APIs), introducing isolation
is a more complex task; isolation alone is not enough, and in
order to provide protection against a wide range of attacks,
APIs have to be carefully revisited [11]. Further, in the case of
FlexOS, we only want to execute such checks when they are
really needed, depending on the instantiated kernel config-
uration: if component A is together with component B in the
same trust domain, then checks are not necessary, but they are
when component C (in another domain) calls component B.

A possible approach to tackle this problem is the one that
we envision to take for preconditions: by enriching allmicroli-
braries with API metadata, the build system could possess
sufficient information to automatically generate wrappers
that would include or exclude these checks on-demand.

6 RelatedWork
Previous work addressed the isolation inefficiencies of mono-
lithic kernels by reducing the TCB through separation [4,
44] and micro-kernels [20, 24]. More recently, OSes provid-
ing security through software isolation brought by safe lan-
guages [7, 13, 25, 36, 39] have been proposed. In SASOSes,
isolation has been provided with traditional page tables [10,
23, 32] and recently through intra-address-space hardware
isolation mechanisms [34, 42, 45, 47]. Formal verification of-
fers deterministic security guarantees, but has trouble scal-
ing to modern OSes’ large codebases [28, 29]. Low-overhead
runtime protection mechanisms are commonly found in pro-
duction kernels [15, 17]. However, the most security-efficient
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ones [16] are only enabled for test runs [51] due to their high
performance impact.
In all, each of these approaches represents a single point

in the OS design space and lacks the flexibility of FlexOS to
automatically configure variable, fine-grained security/per-
formance profiles. LibrettOS [41] does allowaLibOS to switch
between SASOS and microkernel modes, but remains limited
to a small subset of the security/performance design space.
SOAAP [21] proposes a system to explore software’s compart-
mentalization space using static/dynamic analysis; however,
thiswork targetsmonolithic user-space code-bases, as opposed
tomodular kernel code-bases for FlexOS.

7 Conclusion and FutureWork
FlexOS provides developers the ability to mix and match iso-
lation primitives, be they hardware or software, which allows
creating tailor-made versions of the same app for target work-
loads, with good performance and improved security, as our
experiments have shown for two apps.
This paper is only an initial exploration of the potential

benefits of FlexOS. Our future work aims to automate check-
ing the safety of a proposed configuration, and searching for
configurations with desired properties automatically. This
will in turn enable developers to build robust software by
mixing and matching components with various trust levels.
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