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Abstract

Embedded systems do not benefit from strong memory pro-

tection, because they are designed to minimize cost. At the

same time, there is increasing pressure to connect embedded

devices to the internet, where their vulnerable nature makes

them routinely subject to compromise. This fundamental

tension leads to the current status-quo where exploitable

devices put individuals and critical infrastructure at risk.

We present the design of a dependable embedded OS

where compartmentalization and memory safety are first-

class citizens. We co-design the OS with an embedded hard-

ware platform that implements CHERI capabilities at a sim-

ilar cost profile to existing chips with minimal security. We

demonstrate key design benefits: fine-grained fault-tolerant

compartments, OS-level support for compartment-interface

hardening, and auditing facilities to thwart supply-chain at-

tacks, among others, and show that they come at a memory

usage and performance cost that allows their widespread

deployment in cheap, resource-constrained devices.

CCS Concepts: • Security and privacy → Operating sys-

tems security; Embedded systems security.
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1 Introduction

Embedded systems exist in ecosystems where pennies on

the bill of materials can be the difference between profit and

loss for the manufacturer. Thus, embedded devices are of-

ten deployed with fewer security features than conventional

devices to cut costs, for example, without an MMU [92]. On

top of this, they generally run legacy software stacks written

in unsafe languages. Sacrificing security for cost, combined

with the increased pressure to connect embedded devices to

the Internet, creates a vulnerability storm. Botnets such asMi-

rai [10] hoard hundreds of thousands of IoT devices, and their

impact grows every year [24, 34, 70, 73, 76, 94, 97]. Vulnera-

ble IoT control systems are also a growing concern, routinely

compromising critical infrastructure [35, 61, 84, 86, 95].

The specific nature of embedded hardware and software

exacerbate the vulnerabilities that cheap hardware makes

possible. Embedded software often has complexmulti-vendor

auditing requirements that constrain how software com-

ponents are distributed and integrated. For example, soft-

ware that directly interfaces with hardware might be sup-

plied in binary-only form [81], e.g., because that specific

binary passed regulator approval [82]. These requirements

must compose with increasingly complex software supply

chains [105, 107, 108]: parts may be developed in-house or

adopted from external (open-source) vendors or SDKs. Em-

bedded systems also have attribution requirements (who is

liable when software causes damage?) [47], leading to secu-

rity features such as the memory protection unit (MPU) [11],

present on many low-cost devices, to be used for attribution

as much as for security. These particularities make the design

of dependable embedded systems especially challenging.

Prior works on securing embedded OSes [18, 36, 45, 46,

49, 55, 77, 109] use existing hardware such as the MPU or

TrustZone for memory isolation, limiting these solutions

to coarse-grained isolation [92]. Further, most works auto-

matically retrofit memory isolation into existing embedded

software [18, 45, 46, 49, 109]. This causes a lack of research on

hardening interfaces, needed for strong isolation [52, 53] and

a lack of research on enforcing availability, memory safety,

or thwarting supply-chain attacks [51], all important in the

embedded space. Other works use safe languages [55, 56]

which are not ideal either [90], e.g., rewriting software is

often impracticable for cost-sensitive devices.
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Figure 1. The CHERIoT hardware-software co-design.

We present the design of a dependable embedded OS

where isolation and memory safety are core primitives. We

design this OS together with the CHERIoT core [9] (com-

mercial silicon expected in 2025 [88]), a specialized imple-

mentation of CHERI capabilities [98] that fits the same area

and power costs as existing embedded devices. We show

that, building upon this hardware, we can implement truly

fine-grained fault isolation and fault tolerance at both code

and thread boundaries. We demonstrate how these hard-

ware primitives and the OS APIs we build upon them enable

seamless hardening of compartment interfaces and complex

delegation patterns. We also show how our platform can be

mechanically audited to help detect supply-chain attacks and

programming errors. We envision deploying these benefits at

scale and show that they can be achieved on a tiny embedded

core with only tens of KBs of SRAM. Our platform can run ex-

isting embedded code such as the Microvium [42] JavaScript

engine, the FreeRTOS TCP/IP stack [5], and the BearSSL TLS

stack [79], providing a simple migration path for existing sys-

tems. Similar techniques are applicable to larger systems: we

aim, through this work, to showcase ideas that are valuable

at other scales. The CHERIoT platform is open-source [2].

2 CHERIoT: Hardware-Software Co-Design

We claim that a clean-slate approach to the entire hardware-

software stack is needed to improve embedded security. We

begin with an overview of the CHERIoT hardware archi-

tecture, described in a separate publication [9], and then

highlight the core design ideas of our OS. The link between

both parts of the co-design is illustrated in Fig. 1.

2.1 The CHERIoT ISA and Hardware Platform

The CHERIoT ISA is an implementation of CHERI capabil-

ities [98] specialized for embedded systems. A CHERI capa-

bility is a hardware pointer type that carries a cursor, the
address to which it points, permissions, and bounds within
which the cursor may range. The lower bound is called base.
In CHERIoT, all pointers are implemented as CHERI capabili-

ties. This allows the hardware to enforce deterministic spatial

memory safety by checking bounds at each memory access,

and to enforce compartmentalization [98]. Each capability

is associated with a non-addressable CHERI tag bit. If the

CHERI tag is cleared, the capability becomes invalid. The tag

attests that the capability stems from a permitted sequence

of rights non-increasing operations. Invalid operations on a

capability (e.g., overwriting part of it) automatically clear

the CHERI tag of the capability. Using an invalid or out-of-

bounds capability traps before the operation is performed.

We now focus on the core architectural features specific to

CHERIoT that enable our OS design. Each of these points is

covered in details in the dedicated publication [9].

No MMU. Unlike existing CHERI systems, CHERIoT has no

MMU (or MPU [11]) so CHERI is the only isolation mechanism
present. This is necessary not only for the low-cost devices we
target [92], but also for the real-time CHERIoT use-cases by

removing nondeterministic latencies that arise from caches

with a conventional MMU and page-table walker.

Heap temporal memory safety. When we deallocate a

heap object, we must invalidate all capabilities pointing to it

(wherever they are in memory) to achieve temporal memory

safety. Existing CHERI systems implement this by repur-

posing MMU features [26], but these are absent on most

embedded devices. Instead, CHERIoT enables deterministic

temporal memory safety via two new hardware features.

The load filter makes capabilities that point to a freed

heap object unusable when they are loaded into registers. In

CHERIoT, each eight-byte granule of heap memory is associ-

ated with a revocation bit, stored in a separate SRAM region.

When an object is freed, the allocator sets the revocation

bit for each granule of the object. Later, whenever a capabil-

ity is loaded from memory, the CPU’s load filter checks the

revocation bit corresponding to the base of that capability,

and, if set, clears the capability’s CHERI tag. The bounds

of a capability can be only reduced, not increased, so the

address of the base is guaranteed by the hardware to always

be within the bounds of the original allocation.

The revoker enables reuse of freed heap memory. The re-

voker iteratively scans every capability in memory, invalidat-

ing any that point to freed memory. This happens in parallel

to normal CPU execution.
1
Once all memory has been swept,

we know that no valid capabilities exist to any object that was

freed before the sweep: the revocation bits can be cleared and

memory from freed objects can be reused for new allocations.

Safe delegation. Compartments need to share (delegate) ob-
jects across trust boundaries. Prior CHERI systems support

this via twomechanisms. First, the permit-load, permit-store, and

permit-exec permissions on capabilities, which encode read,

write, and execute rights for the memory referenced by the

capability. These can be stripped to enforce fine-grain, yet

shallow access control: though permit-store (which encodes

write rights) may be removed from a capability 𝑐1, it may still

be present on a capability 𝑐2 reachable in thememory pointed

1
Sweeping the whole memory on an embedded system is practical: a full

sweep on a 250 MHz chip with an ample 1 MiB of SRAM takes ∼1.5 ms with

a simple revoker [9]. Commercial devices [88] have further optimizations.
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to by 𝑐1. Second, the global permission which, when stripped

from a capability 𝑐1, forbids storing 𝑐1 except through a capa-
bility that has the permit-store-local permission. The only such

capabilities in our OS are stacks, which are themselves non-

global, and register-save areas. This prevents non-global point-

ers and pointers to the stack from being stored anywhere

other than on the stack, enforcing a shallow no-capture guar-

antee: an untrusted callee cannot keep a non-global argument

𝑐1 after returning, but may keep a global 𝑐2 loaded through 𝑐1.

These permissions are insufficient to secure compartment

interfaces because they are shallow. CHERIoT adds two capa-

bility permissions to solve this. The first, permit-load-mutable,

enforces deep immutability: if 𝑐1 lacks this permission, any

capability 𝑐2 loaded through 𝑐1 will have its permit-store and

permit-load-mutable permissions removed. This enables passing

a pointer argument while ensuring that a bad callee cannot

modify anything reachable from that pointer. The second

permission, permit-load-global, enforces deep no-capture: if 𝑐1
lacks this permission, any 𝑐2 loaded through 𝑐1 will have its

global and permit-load-global permissions removed, preventing

a callee from capturing anything reachable from that pointer.

More expressive sealing. The sealing mechanism, present

in existing CHERI ISAs, is another architectural approach to

protect compartment interfaces. Sealing transforms a capa-

bility into one that can be loaded and stored but not used or

modified except via an explicit unseal operation. Sealed ca-

pabilities have an object type, and both sealing and unsealing

operations are capability-mediated: (un)sealing a capabil-

ity of a particular type requires an authorizing capability

matching that type. As we show, sealed capabilities are key in

enabling distrusting compartments to safely share opaque ob-

ject references (§3.2.1). The sealing mechanism also enables

sealed entry (sentry) capabilities, which are sealed executable
capabilities unsealable via a jump instruction. These enable

granting access to a function without exposing any data

that might be accessed via program-counter (PC)-relative

addressing within that function. We also use sentries to

protect return addresses by sealing the return capability as a

sentry, allowing the callee to jump back only to that address.

CHERIoT refines CHERI’s notion of sentries to carry se-

mantics with respect to enabling and disabling interrupts.

It discriminates between forward (call) and backward (re-

turn) control flow. A forward sentry can optionally specify

a change of interrupt status (enable/disable), and match-

ing backward sentries restore the interrupt status if it was

changed. Non-TCB software cannot directly enable or defer

interrupts; instead, functions may be annotated with their

desired posture, to be adopted at invocation. This enforces

a structured programming model on interrupt posture and

facilitates auditing of code that disables interrupts.

2.2 Co-Designing an OS with the CHERIoT hardware

We co-design the hardware platform with a clean-slate em-

bedded OS and programming model (upper part of Fig. 1).

2.2.1 Threat Model. Attackers aim to compromise the

integrity, confidentiality, or availability of the system. They

may do so by exploiting software vulnerabilities (e.g., from

the network for an IoT device) or by attacking the software

supply-chain to backdoor software parts. We assume that the

Trusted Computing Base (TCB), discussed next, is bug-free

and not backdoored. We do not assume any correctness prop-

erties for compilers used for untrusted components, an at-

tacker is assumed to be able to run arbitrary instructions in a

compartment. We assume that the CHERIoT hardware is free

of bugs and side channels. CHERIoT benefits from CHERI’s

formal verification [30, 72], and both CHERIoT hardware and

software are currently being formally verified [21, 78]. Phys-

ical attacks (e.g., tampering with the device) are out of scope.

2.2.2 Approach. We build on five high-level principles:

(P1) Full memory safety. Memory-safety bugs remain the

most prevalent type of security vulnerabilities [96]. We sys-

tematically mitigate them. CHERI enables spatial memory

safety; our allocator complements this with temporal mem-

ory safety leveraging the CHERIoT architecture (§2.1). With

CHERI, memory-safety bugs still harm availability since they

cause a fault: we leverage compartments, introduced next,

for fine-grained fault handling.

(P2) Fine-grained fault-tolerant compartments. We de-

sign a hybrid compartment model [53] where compartments
isolate at code boundaries and threads isolate flows across and
within compartments, to isolate other types of bugs and con-

tain the impact of memory-safety faults on availability. This

model enables us to implement least privilege at a fine gran-

ularity and adapt isolation strategies to the specifics of each

component. We make it easy to secure compartment inter-

faces by designing APIs that build on CHERIoT’s hardware

features (§2.1) to thwart interface vulnerabilities [52]. Our

compartments are fault-tolerance boundaries: our OS design

enables easy micro-reboot [16] of compartments.

(P3) Fit low-cost embedded deployments.We target inex-

pensive devices with 10s-100s KB of RAM. To fit such mem-

ory constraints we must trade-off memory usage and per-

formance. We contribute a memory management approach

centered on a unified heap with a quota system that enables

compartments to easily and safely share memory.

(P4) Easy to audit. Integrators [39, 91] should be able to sys-

tematically audit firmware images to detect policy violations

at the integration level. We enable this by adopting a static

isolation model where compartments and threads are fixed

at build-time. We combine this with a linker that produces

a human- and machine-readable report of the structure of

the system, and develop tooling to verify that these reports

conform to given policy requirements.

(P5) Easily integrate with existing code-bases. Embedded

software is usually compiled targeting specific SoCs, so we

do not try to be binary compatible. However, we do try to

minimize source-code changes, and do so through wrappers
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Figure 2. Overview of the TCB when running a JavaScript

program (some non-TCB compartments are omitted).

that encapsulate legacy components to retrofit our compart-

ment model (e.g., harden interfaces and add fault tolerance)

and interface with our platform APIs.

3 Design of the CHERIoT RTOS

We now illustrate how CHERIoT RTOS embodies the princi-

ples laid out in the previous section by introducing its core

OS components, its architecture, and its APIs.

Compartments and threads. Our OS instantiates the hy-

brid compartment model described in P2. A compartment is
a static isolation abstraction that encapsulates code and data.

Compartments can share code via shared libraries. They can

also share data, either statically via code annotations or at

run time. A thread is a statically-created schedulable entity

composed of a stack, a register state (in registers or saved),

and a trusted stack (discussed in §3.1.2). At any point in time,

a thread executes in exactly one compartment. Threads can

move from one compartment to another via compartment
calls into pre-defined entry-points. Compartment calls can

take arguments and return values, similarly to function calls.

Threads can access only their current compartment’s code

and data, the call’s arguments, a subset of their stack exclu-

sive to the call, and transitively reachable resources. While

threads can exchange capabilities and data through shared

memory (e.g., compartment globals), they are otherwise iso-

lated from one another to provide flow isolation.

Fault tolerance. At any given time, the CHERIoT core runs

one thread, though multiple threads (in the same compart-

ment or not) may share the core with preemptive scheduling.

A thread that encounters a fault, e.g., due to a memory-safety

violation, invokes the developer-provided error handler for
that compartment. The handler might unwind the thread out

of the compartment and/or micro-reboot [16] the compart-

ment (i.e., reset it into a pristine condition, §3.2.6). Our design

fundamentally simplifies micro-reboots: fine-grained isola-

tion of compartments and threads reduces reset complexity

and latency; isolation and capabilities enable easy segrega-

tion of state; and components are inherently decoupled with

well-defined, hardened, and retryable APIs.

Shared libraries.We allow compartments to easily share

code with a shared library abstraction. A shared library does

not define a new security context, and its code executes

within the caller’s security domain. Shared libraries must
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Figure 3. Simplified overview of a CHERIoT compartment.

not have mutable globals, to ensure that they cannot trans-

fer or leak state between calling compartments and threads.

This enables a programming model equivalent to each li-

brary function being copied into the compartment that calls

it, without the corresponding memory overhead which is

crucial for our embedded deployment (P3).

Trust. The TCB of the OS includes only four components:

the loader, the switcher, the allocator, and the scheduler (see

Fig. 2).We take a strong stance on the principle of least priv-
ilege [85]: aside from the loader which is fully trusted (but

only runs at boot time), no runtime component, even in the

TCB, runs with all privileges, e.g., none can access all of the

memory. Instead, we trust each TCB compartment to enforce

a specific security property, whose failurewould impact an as-

pect of confidentiality, integrity, or availability, but would be

insufficient by itself to take complete control of the system.

3.1 OS Architecture Overview

Let us go through the components of the TCB (Fig. 2): the

loader, the switcher, the memory allocator, and the scheduler.

3.1.1 The Loader ( 1 ). The loader runs on boot to start up

the system. Its only input is the firmware image. The loader

has access to the omnipotent root set of CHERI capabilities,

which it refines to populate all initial capabilities in memory,

based on compiler-generated metadata from the firmware.

The loader sets up compartments (Fig. 3). This includes

two per-compartment tables used for compartment calls and

shared-library calls. The export table ( A in Fig. 3) contains

a capability to the compartment’s code and metadata de-

scribing its entry points. It is directly accessible only to the

switcher ( 2 in Fig. 2). The import table ( B ) is accessible

read-only to the compartment via PC-relative addressing

and contains the only capabilities that, after boot, may point

outside of the compartment: capabilities to MMIO regions

( C ) granting access to device memory;
2
sentry capabilities

(§2.1) allowing direct invocation of switcher and library ex-

ported functions; sealed capabilities to the export table of

other compartments ( D ), unsealable by the switcher, for

compartment calls; and sealed capabilities to static opaque

objects and their matching unsealing capabilities (§3.2.1).

2
In embedded C, pointers to MMIO devices are commonly created by casting

an integer address.With CHERI, this will result in an invalid capability as we

cannot forge a capability. Instead, our loader derives such capabilities from

its omnipotent capability and exposes them to compartments. This import

table mechanism also exposes compartments’ MMIO access to auditing (§4).
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The net effect of the loader is to instantiate the initial ca-

pability graph described by the firmware. Its correctness is

key to the system’s confidentiality, integrity, and availabil-

ity. We thus design it to be deterministic to ease auditing.

Moreover, the loader runs only during boot. We therefore

place it along with the firmware metadata it consumes in

SRAM that later becomes the shared heap. After boot, a small

assembly routine erases this memory before handing control

to the scheduler. This reduces size constraints on the loader,

which can thus use simpler code and a lot of invariant and

consistency checks to further ease auditing.

3.1.2 The Switcher ( 2 ). The switcher is responsible for

transitions between threads (context switches), between com-

partments (compartment calls/returns), and for first-level

trap handling. Context switches occur in response to traps

(cf. §3.1.4), whereas compartment calls are triggered via a

direct call into the switcher through the sentry in each com-

partment’s import table ( B in Fig. 3). The switcher is themost

privileged component that runs after boot and contains ~355

assembly instructions (similar to the number of unverified in-

structions in seL4 [6]). A malicious switcher can compromise

availability (by deciding not to context switch) and partially

confidentiality and integrity as it can access each thread’s

register file and stack. However, the switcher cannot directly

access any other parts of the system’s memory.

Each thread has an associated trusted stack, which is a re-

gion of memory exclusively accessible to the switcher after

boot. It contains the register save area for context switches

and a small frame for every compartment call, allowing the

switcher to safely operate even if a compartment has cor-

rupted all the state to which it has access. The switcher (and

only the switcher) holds a PC capability with a special per-

mission which allows it access to a dedicated control register

containing a capability to the current thread’s trusted stack.

A compartment performs a compartment call by passing

the switcher a sealed capability from its import table ( B

in Fig. 3) that points to the callee’s export table ( D ). Only

the switcher holds the capability that can unseal this sealed

capability, as it is the sole entity trusted to perform domain

switches. The base of the capability points to the beginning of

the callee’s export table, where the loader stored the callee’s

code and data capabilities. The cursor points to the target

entry in the callee’s export table, which describes the meta-

data for the call, including the offset of the target entry point

within the code capability, the number of argument regis-

ters, and the minimum required stack space. The switcher

pushes a new frame on the trusted stack describing the re-

turn address once this compartment finishes and then clears

all non-argument registers, truncates the stack capability, ze-

roes the new stack’s memory, and jumps into the callee. The

return path is similar: the switcher zeroes the stack, restores

the code, data, and stack capabilities from the caller, zeroes

all non-return registers, and returns to the caller.

3.1.3 The Shared Heap ( 3 ). The memory allocator ex-

poses a shared spatially- and temporally-safe heap. A shared

heap is a key part of our approach to lower embedded de-

ployment costs (P3). Embedded software often has each com-

ponent pre-allocate all of the memory it requires (e.g., by

storing everything in globals). In that case, the total memory

requirement (and thus the minimum price for a usable SoC)

is bounded by the sum of each component’s worst-case mem-

ory usage. A shared heap lowers this bound to the worst case

of the sum of the memory usage of all compartments at any

given time. This allows phases of computation that have dif-

ferent memory requirements to use time-division multiplex-

ing to share memory. This is the same reason why all OSes

for larger computers provide dynamic memory allocation.

We allow safe sharing of allocations at the level of sub-

objects from mutually-distrusting components. Heaps with

object-granular sharing were historically impracticable on

embedded devices due to the limitations of isolation mech-

anisms. Cheap devices often feature an MPU [11] (PMP [50]

on RISC-V) that supports eight domains. MPU regions must

be configured by a trusted component, making it hard to ex-

pose a simple programmingmodel for sharing anythingmore

complex than a simple buffer. The low number of regions

results in a lot of over-privilege, and the need to track pro-

tection mappings complicates the TCB. CHERI capabilities

overcome these limitations. They can isolate at a fine grain,

eliminating fragmentation and over-privilege. Their unforge-

ability simplifies the allocator by removing the need to track

mapping metadata. Most importantly, they are exposed as

pointers in the source language, so sharing is expressed in

terms of language-level objects, not regions of address space.

The allocator is trusted for heapmemory safety. A compro-

mise of the allocator will impact confidentiality and integrity

through leaking or tampering with heap-allocated data, as

well as availability through not fulfilling allocations (or doing

so incorrectly, to trigger faults). The concrete impact highly

depends on how much compartments rely on the allocator,

as the allocator has access only to heap memory.

At a high level, our allocator hands out capabilities to

ranges of memory and guarantees that a compartment can ac-

cess a heap object only if it has a pointer to it. When an object

is freed, the allocator sets the revocation bits corresponding

to the allocation (§2.1) and the CHERIoT load filter ensures

that these pointers cannot be used. The allocator must even-

tually reuse freedmemory to satisfy our low-memory deploy-

ment model (P3), but such reuse must be done carefully to

preserve memory safety (P1) and compartmentalization (P2):

• Revocation. Re-using freed memory requires invalidating

all existing capabilities to that memory. Our hardware

revoker handles this (§2.1). Unlike prior works in larger

(CHERI) systems [25, 26, 103], accesses to freed objects trap

as soon as free returns rather than only after the revocation

pass has finished. The allocator alone may access freed
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memory as it retains a privileged capability over the entire

heap, such that its loads do not consult the revocation bits.

• Quarantine.Memory associated with an object is safe to

reuse once there are no non-TCB capabilities held to it, i.e.,

after a full revocation sweep. Sweeps take time, thus our

allocator batches revocation, quarantining freed memory

until a revocation pass has been completed (which the allo-

cator can see through a hardware-exposed counter). The al-

locator alone can access freed data, so it limits its overhead

by using in-band metadata to track quarantine. Our alloca-

tor attempts to remove a small, constant number of objects

from quarantine on every malloc and free. Limiting that num-

ber bounds the run time of the allocator to satisfy soft real-

time constraints, and removing more than one object per

operation ensures that the quarantine eventually drains.

• Real-time behavior. Revocation is asynchronous and takes

variable time. Allocations may be delayed until the end of

a revocation pass. Though worst-case revocation time is

constant we, like all RTOSes, discourage from calling the al-

locator in phases with deterministic latency requirements.

• Zeroing. Allocations must not leak secrets from previously

freed data. We thus zero the entire heap on boot, and erase

objects in free(). The allocator’s exclusive access to freed

memory ensures that these zeros persist through to reuse.

3.1.4 The Scheduler ( 4 ). The scheduler is invoked by

the switcher to make scheduling policy decisions. On a trap,

the switcher’s trap entry point spills the registers into the

current thread’s register save area and checks the cause of

the trap. Protection-related traps are handled by the com-

partment itself if it provides an error handler (§3.2.6). Other

traps (e.g., timer or device-specific interrupt) are forwarded

to the scheduler: the switcher fetches a pointer to the sched-

uler’s stack from PC-relative storage, scrubs registers, and

calls the scheduler with a sealed capability to the saved state.

The scheduler then returns to the switcher with a sealed

capability indicating the next thread to run. For interrupts

other than the timer, this may be the thread responsible to

handle the interrupt in the appropriate compartment.

The scheduler can refuse to run threads, so it is trusted

for availability. However, it is not trusted for confidentiality

or integrity as it cannot unseal the stacks and registers of

interrupted threads and its outputs are carefully checked by

the switcher. Aside from its special switcher entry point, the

scheduler is a normal compartment that provides services

via compartment calls (e.g., futexes, see §3.2.4).

3.2 CHERIoT RTOS Programming Model and APIs

We contribute new APIs to fit the principles formalized in

§2.2.2. Our core OS is not POSIX or FreeRTOS compatible,

however, as we show in §5.2, wrappers can easily be imple-

mented to bring compatibility (P5). We now present the core

APIs and discuss how one can build new APIs on CHERIoT.

Tab. 1 gives an overview of the APIs covered in this section.

Table 1.Overview of CHERIoT RTOS APIs presented in §3.2.

API Key Idea

Opaque Objects

(§3.2.1)

Opaque objects make it possible for a compartment

to pass a pointer to an object to another compartment

and later receive that pointer with assurance that the

object was not tampered with. This makes it easier to

harden interfaces, to reduce the amount of state in a

compartment, and to simplify error handling.

Allocation Capabilities

& Quotas (§3.2.2)

Allocation capabilities embody the permission to allo-

cate and free heap memory. They are associated with

a quota to control compartment heap memory usage.

This enables the CHERIoT RTOS to enforce least priv-

ilege while supporting heap memory allocation.

Quota Delegation

(§3.2.3)

Allocation capabilities can be delegated. This makes

it possible for a compartment to authorize another

one to perform heap operations on its behalf.

Synchronization &

Communication (§3.2.4)

Build a rich set of de-privileged multi-threading APIs

atop a simple futex primitive.

Interface Hardening

(§3.2.5)

Provide mechanisms and APIs against most classes of

compartment interface vulnerabilities.

Error Handling

(§3.2.6)

Make it possible to define compartment-specific fault-

handling policies to enable fault tolerance.

3.2.1 OpaqueObjects. Limiting the amount of global state

stored in each compartment is key to writing robust compart-

mentalized software. The more state a compartment holds,

the harder it is to assert that this state is correct and does not

break thread or flow isolation, and the harder it is to recover

from faults [14, 16]. We provide OS support for opaque ob-
jects to reduce the amount of state stored in a compartment.

Pointers to opaque objects can be exported (e.g., returned

from a compartment call) and later re-imported (e.g., passed

via another call) with assurance that the object was not tam-

pered with. Consider an SSL compartment: APIs only need

to access the state of one flow at a time, so flow state can be

opaquely returned (e.g., state tls_connect(void)) and passed as

API argument (int tls_send(state, buffer, length)) to make an

SSL compartment nearly stateless. This shows a key pattern

enabled by opaque objects: safely making callers hold state

that corresponds to their interaction with a callee. Callers be-

come responsible for holding their entire state at the scale of
the system, simplifying fault recovery in the callee by avoid-

ing state spill [14, 15]. CHERIoT’s architectural support for

sealing (§2.1) makes implementing opaque objects simple.

However, the encoding of CHERIoT capabilities allows for

only seven distinct types of opaque objects. This is a problem

as two compartments sharing a sealing key would be able to

unseal each other’s opaque objects.

We design a token API compartment that virtualizes seal-

ing on top of a hardware sealing type to which it has exclu-

sive access. The unsealing API void* token_unseal(key, sobj) it

implements is similar to hardware unsealing: to unseal a

sobj of a given virtual sealing type, an authorizing key for

that virtual sealing type must be provided. The key must be

a tagged capability with the permit-unseal permission, and its

cursor must be the virtual sealing type. The sobj handle must

be sealed with the token API’s hardware-backed sealing type

and bear a header that stores its virtual sealing type followed

by the payload. The token API unseals sobj (from under its
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architectural seal) then checks that the type in the key and the

type in the header of sobj match. If so, it returns a capability

to the payload of the unsealed object, exclusive of the header.

Virtual sealing types can be created at run time with a

key token_key_new() API. Sealed objects (sobj) can be dynami-

cally allocated with an allocator API that allocates memory

with a (protected) header holding a given key. Virtual sealing

types and sealed objects can also be created statically with

macros, to be instantiated by the loader at boot time (§3.1.1).

Allocation capabilities, discussed next, are an example of

static (i.e., statically-instantiated) opaque objects.

3.2.2 Allocation Capabilities and Quotas. It is essential

to control compartments memory usage to enforce availabil-

ity. To that end the allocator defines allocation capabilities
that specify quotas. Allocation capabilities are static opaque

objects logically decoupled from compartments: a compart-

ment may hold none or several allocation capabilities with

distinct quotas. CHERIoT’s core memory allocation APIs

heap_allocate and heap_free take allocation capabilities, such

that only compartments with access to an allocation capabil-

ity may allocate memory, and the memory they can allocate

is limited by the quota defined therein. For compatibility

we provide malloc and free which use, if extant, the compart-

ment’s default allocation capability. Since quotas are defined

statically, policies on each compartment’s quota(s) can be

enforced globally via firmware auditing (§4).

Allocation capabilities also contribute to safer delegation.

It is often necessary to share a heap object with another

compartment without allowing it to free the object. This

is not possible if the object itself is the token of authority

that permits freeing. heap_free addresses this by requiring an

allocation capability matching the one used to allocate the

object. As we discuss next, compartments may decide on

a case-by-case basis to share their allocation capability to

grant another compartment the right to free their objects.

3.2.3 Quota Delegation. Some compartments need to

allocate memory but should not own that memory. Con-

sider a compartment that offers services to several mutually-

distrusting callees. If the compartment allocates memory

with its own quota to satisfy API calls, a bad callee might

repeatedly call its APIs to exhaust its quota and thus violate

availability. For example, a realistic tls_connect API must al-

locate memory and may be called by any compartment on

the system. To address this, such APIs can take an allocation

capability as an argument to allocate on behalf of the caller.

Quota delegation must be done carefully from a security

point of view. First, allocating memory with the caller’s ca-

pability allows the caller to free the memory at any time to

trigger CHERI faults in the callee. For API endpoints that do

not alter the global state of the compartment, this is fine: due

to memory safety and thread isolation, callers may only DoS

themselves. In other cases, a fault in the callee may affect

other callers, which is problematic. The sealed allocation API

(§3.2.1) neatly solves this problem by requiring both a match-

ing allocation capability and virtual sealing type to deallocate.

Since callers do not have access to the sealing type, they can-

not free the memory out from under the callee if they used

this API. Additionally, our interface hardening API features

primitives to temporarily prevent freeing of a pointer (§3.2.5).

Second, a malicious callee might exhaust the quota, or ap-

propriate the allocation capability. The former can be avoided

by using a dedicated allocation capability for API calls, which

we enable by decoupling quotas from compartments. We ad-

dress the latter through strict enforcement of the principle of

intentional use [69]: callers can use CHERIoT’s enforcement

of deep no-capture (§2.1) to prevent callees from storing their

allocation capabilities. This also has the advantage of avoid-

ing confused deputy problems [38]: by not keeping callees’ al-

location capabilities, a callee cannot be tricked into allocating

in another compartment’s quota it may also have access to.

3.2.4 Synchronization and Communication. We build

a rich set of thread synchronization and communication ab-

stractions from a small set of key OS primitives. At the core,
the scheduler provides a least-privilege futex [27] abstraction.

It has two APIs: compare-and-wait, which atomically sleeps if

the futexwordmatches a given value, andwake, whichwakes
one or more sleepers, who are responsible for comparing the

futex word again. Both require only a capability to the futex

word with load permission, not retained by the scheduler.

We build locks as a shared library on top of futexes by

storing the lock state in the futex word. This fits the sched-

uler trust model: the scheduler can spuriously wake a thread

or can avoid waking one (breaking availability) but cannot

modify the lock word to cause two threads to believe that

they have acquired the same lock (breaking integrity). Typ-

ically, the lock’s futex word is a private compartment global.

A compartment may be called from multiple threads and

safely use the futex-based lock for mutual exclusion.

We buildmessage queues atop futexes. Message queues are

an interesting case as they cater to two different trust models:

communication between threads that trust each other (e.g., in

a compartment), and between threads that distrust each other.

To satisfy both, we build message queues as a shared library

usable as-is in the trusted case. For mutual distrust, we en-

capsulate the library in a compartment that exposes queues

as opaque objects and adds additional interface hardening.

Amechanism towait onmultiple futexes is needed to build

more complex synchronization APIs. We provide the sched-

uler multiwaiter API, which allows a calling thread to block

for a set of futex events. All asynchronous APIs on CHERIoT

expose a futex that can be passed to the multiwaiter: e.g.,

sockets (enabling poll use-cases) and message queues. Unlike

Kqueues [54], we prioritize memory usage over scalability as

we expect a low number of events on our embedded deploy-

ments, and the multiwaiter is trusted only for availability.
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3.2.5 Interface Hardening. The attack surface of com-

partments consists of their API endpoints and the data they

share through compartment call arguments and statically

shared globals. The attack surface of isolated threads is

shared data. Interfaces require careful hardening as they

are the weak spot of compartmentalization [52, 53, 68]. We

design the CHERIoT platform to provide mechanisms and

APIs against most classes of interface vulnerabilities [52].

Thwarting information leaks. In CHERI systems, infor-

mation leaks affect not only confidentiality but also integrity

as leaked capabilities can grant write rights. Leaks can stem

from uninitialized memory (e.g., compiler-added paddings)

that leak data from previous allocations, or from over-sharing,

i.e., shared data or capability permissions that the other party

does not need [52]. Our allocator addresses the former by sys-

tematically erasing memory before assignment to a compart-

ment. Thus, uninitialized data can leak only in compartments

that do custom memory management or share non-zeroed

stack buffers, which we advise against. We address the latter

with capability de-privileging APIs. Before sharing a capabil-

ity (e.g., in a compartment call), compartments should use our

APIs to tighten capability bounds and permissions. For exam-

ple, before passing a send buffer to a socket API, the sender

should set the capability read-only and tighten its bounds

around the payload. When possible, capabilities should also

be made deeply immutable and non-capturable (§2.1) with
the same API to prevent other parties from modifying or

capturing capabilities reachable from the shared capability.

These APIs are reinforced by our auditing support (§4) which

helps detect statically-visible cases of over-sharing.

Checking inputs. Inputs that cross trust domains must be

carefully checked at two levels. First, pointer argumentsmust

be valid capabilities, of the right length, and with the right

permissions. Though error handlers (§3.2.6) can recover from

faults caused by invalid inputs, preventing faults in the first

place is often simpler. We enable such checks with APIs that

can check if a pointer is a capability with valid permissions

and length, whether or not a capability is sealed, and if a

heap buffer can be freed. Second, data itself must be checked.

As in prior work [68], CHERIoT makes compartments re-

sponsible for correctly vetting data flows as these checks are

application-specific. However, our opaque objects (§3.2.1)

considerably simplify the case of exported-and-reimported

data: objects returned opaquely need to be checked for suc-

cessful unsealing only when reimported, eliminating the

complex object-correctness checks otherwise needed.

Thwarting TOCTOU [3]. Checks must be resilient to TOC-

TOU attacks, a problem overlooked by prior compartmental-

ization works [52]. Copying data before checking is neces-

sary in the general case, thus we simplify specific cases. First,

our capability de-privileging APIs (§2.1) make it possible

to prevent a callee from (concurrently) modifying an object

they are passed or accessing it after returning. A distinct

problem is temporal-memory-safety TOCTOU attacks, where

a bad compartment frees an object that another one is us-

ing to trigger a temporal memory-safety fault. We address

this with our allocator claim and ephemeral claim APIs. A

claim prevents the allocator from freeing the object until the

claim is released. It requires an allocation capability whose

quota can account for the object. Freeing the object with the

allocation capability used to claim releases the claim, and

the memory is released only once all claims are gone. An

ephemeral claim prevents an object from being freed until the

thread’s next compartment call or ephemeral claim. It does

not require an allocator capability and is much faster than a

full claim as it uses a switcher mechanism inspired by hazard

pointers [63] to avoid a compartment call to the allocator.

Checking entry points. Compartment and shared library

entry points are defined via compiler annotations. The com-

piler populates compartment import and export tables based

on (a) these annotations and (b) the calls each compartment

makes. Functions not exposed at compile time via an anno-

tation cannot be called by any other compartment at run

time. Further, if a compartment’s code does not call another
one’s entry points, then these entry points will not be in

its import table and thus not callable at runtime (providing

cross-compartment control-flow integrity [53]). When declar-

ing entry points, developers can also state how much stack

memory they require. This protects against an attacker call-

ing an API with a small stack to trigger stack overflow faults

in the callee. This matches good embedded systems practices

to be careful with stack usage [12], and we provide tooling

to dynamically determine stack usage with a watermark.

3.2.6 Error Handling. Compartments are fault-tolerance

boundaries: they can define error handlers, called by the

switcher (but executing in the context and with the rights of

the compartment), to handle traps such as CHERI faults or

illegal instruction faults. We expose two such abstractions:

Global error handlers are implemented by defining a spe-

cial function compartment_error_handler() in the compartment.

The function takes as argument the cause of the fault, and a

copy of the register file, which it may modify. Its return value

can instruct the switcher to resume (with the potentially

modified register file), or unwind in the caller compartment.

Though they share similarities with UNIX signal handlers,

global handlers handle only synchronous faults (not arbitrary

events), and do so only in their respective compartment.

Scoped error handlers are lexically-scoped. Developers

wrap code with macros DURING {...} HANDLER {...} similar to try-

except exception handling. We design scoped handlers using

C’s longjmp and setjmp, revisiting historical exception-handling

mechanisms [19, 71]. Upon entering a scope, setjmp stores the

four non-temporary registers onto a linked-list on the stack,

whose head pointer is at the top of the stack. When the error

handler is called, longjmp retrieves the head and jumps to the

handler by restoring the four registers. Scoped handlers are
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less expressive than global handlers (e.g., they do not indicate

the cause of the fault and do not allow resume), but feature a

near-zero memory overhead. longjmp and setjmp have become

uncommon for exception handling due to their runtime cost

on the non-error path [19]; however the specifics of CHERIoT

(our small register set and storing the list head at the top of

the stack) allow us to implement them in just six instructions.

Error-handling policies.Handlers can either (a) ignore the

fault and unwind the thread, (b) correct the fault, or (c) en-

tirely micro-reboot [16] the compartment. Without handler

the switcher defaults to (a), which is the right approach for

APIs that do not operate on global state. Correcting faults

typically consists of a rollback, releasing resources held by

the thread or resetting some state before unwinding. Cor-

recting faults is possible as illegal operations trap before
affecting data, unlike an MPU that faults only after writes

have overflowed up to the bounds of a memory region. Micro-

rebooting is needed in the most complex cases where APIs

operate on global state that is too complex to be corrected.

Our hybrid compartment model fundamentally simplifies

micro-reboots by reducing the amount of state that must

be reset. Faults naturally do not spread: compartments are

inherently decoupled with well-defined and hardened inter-

faces; our programming model encourages retryable inter-

faces with timeouts; and the opaque object paradigm (§3.2.1)

fundamentally reduces state spill [14, 15].

To our experience the most complex micro-reboots entail

five steps, which we support with dedicated APIs. (1) Prevent-
ing new threads from entering the compartment, typically by

wrapping entry points with a guard controlled by the error

handler. When using a scoped handler, guard and handler

can be co-located. (2) Rewinding all threads that are in the
compartment. Switcher APIs simplify this by waking up and

faulting all other threads in the compartment. (3) Releasing
all heap data using allocator APIs that free all memory associ-

ated with a quota. (4) Resetting all globals from safe read-only

values. This can be automated with compile-time snapshots

of compartment global data and APIs to restore them. Com-

ponents that must keep persistent state across micro-reboots

can do so through a separate state store [16] compartment.

4 Auditing CHERIoT RTOS Images

So far we presented techniques to prevent policy violations

at run time. However, it is also critical to ensure that the

firmware itself is compliant with the policy at the integration

level [39, 91]. For example, we might need to know precisely

which compartments can access a given critical object. Ensur-

ing policy compliance not only matters for regulatory pur-

poses, it can highlight programmer mistakes (that result in

policy violations, e.g., sharing a capability that should not be

shared) and help detecting supply-chain attacks (malicious

source changes that violate system-level policies). Compart-

mentalization works generally overlook such issues [53].

  

{
  "compartments": {...,
    "http_client": {
      "code": {...},
      "exports": [...],
      "imports": [...]
    },
  ]
}

{
  "compartment_name": "NetAPI",
  "export_symbol": "...",
  "function": "network_socket_connect_tcp(...)",
  "kind": "CompartmentExport",
  "provided_by": "build/.../NetAPI.compartment"
},

 Firmware 
JSON report Import entry for the socket connect API

count(data.compartment.compartments_calling("NetAPI")) == 1 true

Rego policy: there must be only one caller to the network API.

Figure 4. Examples of JSON report and Rego policy.

Our compartment model has a simple guarantee that en-

ables auditing firmware images: at boot, only the import table

of a compartment may contain pointers that authorize access

to memory that is not owned by that compartment (§3.1.1).

This includes, for example, sealed capabilities pointing to

other compartments’ export tables and capabilities that per-

mit direct access to MMIO. It is thus easy to audit, for each

compartment, what APIs it calls in shared libraries and other

compartments, or what devices (or specific device memory-

mapped registers) it accesses. By consolidating this informa-

tion we can also obtain system-wide information, such as

whether or not the sum of the quotas of all allocation capabil-

ities (§3.2.2) in the system is less than the system’s total heap

memory, or assert that a certificate embedded in the firmware

image is accessible only to one specific compartment.

Our linker emits a JSON report containing all of these. Ex-

ternal auditing tools can then mechanically check the report

for compliance against a policy without access to all compart-

ment sources. This supports both simple and complex poli-

cies such as dual-signing policies where two entities provide

code for a device and have policies (e.g., regulatory require-

ments) that must be met for each to sign the firmware image.

We ship CHERIoT with an auditing tool that supports user-

provided policies in the Rego policy language [74]. By declar-

atively expressing desired properties, users can systemati-

cally assert local and system-wide properties before deploy-

ment. Fig. 4 illustrates the firmware report of an HTTP client,

along with a Rego policy checking that only one compart-

ment uses the network API. In practice such queries would

be part of a larger Rego script that checks a broader policy.

5 Evaluation

We implement our OS (Fig. 5), including the TCB, core APIs

(partly described in §3.2), C/C++ standard libraries, a com-

partmentalized network stack, and device drivers in ~13K LoC

of C++/C and 920 LoC of RISC-V assembly. We build for our

production-grade CHERIoT architecture based on the Ibex

RISC-V core [60], expecting commercial silicon in 2025.

5.1 Security Evaluation

5.1.1 TCB Size and Attack Surface. The core properties

of our OS, memory safety (P1) and isolation (P2) rely on the

safety of the TCB (§3). The loader consists of 1.9K LoC of C++

and takes no external input apart from the firmware. After
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boot, it erases itself, eliminating it from the run time TCB.

The switcher consists of 355 instructions of carefully-audited

assembly, with 11 thoroughly-checked entry points. It is the

most critical component of the run time TCB, however its

small size makes it a difficult attack target. The allocator is

the largest component of the TCB, with 3.1K LoC and 16 en-

try points. Still, as discussed throughout §3, we strictly apply

the principle of least privilege to the TCB, such that even

a compromised allocator cannot mount a complete exploit

to, e.g., leak and exfiltrate data. The scheduler consists of

1.6K LoC and 15 endpoints. It is in the TCB only for availabil-

ity. In addition to our efforts to reduce the size and number

of entry points, TCB components are currently the target of

verification building on our formal model of the ISA [21, 78].

5.1.2 Attack Scenarios. Our design is the result of an ad-

versarial evaluation by an experienced red team. Still, no de-

fense is perfect: we now discuss which attacks it can and can-

not prevent, and how we achieve the principles from §2.2.2.

Memory safety. If attackers trigger a memory-safety bug,

the hardware raises a trap. The switcher will then call the

compartment’s error handler (§3.2.6), or unwind the thread

out of the compartment if no handler is defined, which is

the correct behavior in most cases. Thus, assuming these

mechanisms are correctly used, memory-safety bugs cannot

impact confidentiality, integrity, or availability.

Repeat attacks. Error handlers maintain availability by

resetting a compartment into a functional state. However

this cannot prevent DoS with a strong attacker that can

repeatedly trigger traps to force a victim compartment to

spend all its cycles micro-rebooting. This is fundamental to

micro-reboots [16], not to CHERIoT. Gecko’s shadow com-
partments [58] could easily be implemented to address this.

Attacks on the error handler. A buggy error handler can

incorrectly reset compartment state. Such a bug would not

be exploitable by itself and require a chain of exploits to

trigger the error handler and then abuse the invalid state. The

reliance on correct error handling is fundamental to micro-

reboots [16] and error handling in general, not to CHERIoT.

Attacks that do not cause a trap. CHERIoT cannot prevent

the exploitation of bugs that do not cause a trap (e.g., high-

level program logic bugs). However, it can fully contain them

in a compartment to mitigate their impact. Note that, aside

from formal verification, we are not aware of any technique

that could prevent the exploitation of such bugs.

Supply-chain attacks. Supply-chain attacks are contained

by compartments at run time. Further, offline auditing (§4)

can mechanically and pro-actively detect software supply-

chain attacks that affect compartment interactions, e.g., a

bad compartment illegitimately importing the exported glob-

als of other compartments. Consider a library that is not

supposed to use the network API. Auditing can check that

the compartment indeed does not declare a dependency on

the network API, as this would allow it to do illegitimate

network calls at run time. We expand in §5.1.3.

Interface attacks. Attackers that compromised a compart-

ment will try to leverage interface vulnerabilities to spread

to other compartments and mount a full attack [52]. While

we cannot entirely rule out such attacks, our interface hard-

ening APIs (§3.2.5) help developers build strong interfaces

to prevent them, and our fine grain of isolation and cross-

compartment control-flow integrity increases the number of

interfaces that must be breached to mount a full attack [83].

Our programming model could be extended with RLBox’s

tainted types [68] to reduce the risk of oversights.

Overall, our defenses are effective to achieve P1, P2, and P4

as long as integrator-controlled parts (error handlers, inter-

face hardening, auditing) are correctly implemented. This is

generally true for all compartmentalization techniques [53].

5.1.3 Case Study. We materialize these attack scenarios

through a case study. Consider the recent supply-chain attack

on liblzma [17]. A stealthy malicious actor gained upstream

rights on liblzma, a dependency of OpenSSH on Debian and

Fedora systems. A backdoored version of the library used

the GNU C library’s indirect function mechanism [29] to run

malicious code during dynamic linking, to override the RSA

API in OpenSSL. Would CHERIoT, and other approaches to
secure embedded systems, be vulnerable to this class of attack?
CHERIoTwould make it very hard to mount such an attack.

Set aside the fact that our OS does not (yet) support dynamic

linking, by design no compartment can run code in the con-

text of the loader. Our SSL library is compartmentalized, and

liblzma would typically be compartmentalized too. Thus, at

runtime, there is no way for liblzma to access the memory of

the SSL library. It could try to corrupt the SSL library through

interface attacks, yet any outputs from the liblzma library

would be checked by its callers through our interface hard-

ening APIs (§3.2.5), and again by the SSL compartment itself.

The backdoored liblzma release could also introduce code

that made network calls, e.g., to break real-time properties or

turn the device into a botnet. However auditing (§4) makes

it impossible to hide such a backdoor: these new properties

would immediately show up in the JSON firmware report,

and a global auditing policy with queries such as the one

presented in Fig. 4 would detect these changes. Writing an

auditing policy for the liblzma compartment would be easy

since the library has very few runtime dependencies and thus

relies on a stable and well-defined set of compartment APIs.
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Language-based isolation alone cannot prevent this attack.

Consider Rust, which powers Tock’s capsules [55]. Rust does

not support the indirect function mechanism used in the

liblzma attack, but there are many other ways in which a

bad dependency could affect the SSL library even without

using the unsafe keyword. For example on a Unix-like system

it could overwrite memory through /proc [4, 40]. More subtly,

a bad library could exploit soundness bugs in the Rust com-

piler [59], which does not claim security guarantees in the

case of actively malicious (as opposed to simply buggy) code.

Automated compartmentalization, which representsmost

recent works in embedded compartmentalization [18, 45, 46,

49, 109], is fundamentally vulnerable to this attack. These

works aim to automatically split memory and insert domain

switches, provided a code base and desired compartment

boundaries. If liblzma’s new release installs an indirect func-

tion resolver or accesses OpenSSL’s memory, the automated

compartmentalization tool will grant it the right to do so.

This is because these works do not include supply-chain

attacks in their threat model: source code is taken as policy

as components are assumed to be well-intended.

5.2 Source-Compatibility Evaluation

We analyze the existing codebases we ported (P in Fig. 5) and

the effort involved to evaluate the source compatibility of our

platform (P5). These cover low-level, security-critical, and

higher-level embedded components, representing examples

of relevant code. We discuss four of them (two more in Fig. 5).

The FreeRTOS TCP/IP stack [5] (TCP/IP in Fig. 5) is a ma-

ture embedded TCP/IP stack of ~25K LoC. The code-base runs

unmodified on the CHERIoT core. However, it assumes that it

can enable and disable interrupts at will, which our program-

ming model forbids (§2.1). Interrupts are disabled only for

synchronization in the TCP/IP stack, so we replace themwith

a mutex by changing an external header. We also want the

TCP/IP stack to be isolated with all the benefits of CHERIoT,

so we add a wrapper encapsulating it to use opaque objects

for connection state, allocated with quota delegation, to use

our interface hardening APIs, and to be micro-rebootable.

This takes 1.7K LoC with no changes to upstream code; we

pulled code updates for more than a year without conflicts.

We consider this an upper bound of the cost of developing a

wrapper given the complexity and statefulness of the TCP/IP

stack, and costs could be traded off with security properties.

BearSSL [79] (TLS in Fig. 5) is an embedded TLS library of

~30K LoC (including all ciphers). BearSSL runs unmodified

on our platform. As with the network stack, BearSSL is not

designed to be called by mutually-distrusting callers, so we

build a wrapper in 624 LoC to make it run in a fault-tolerant

CHERIoT compartment with flow isolation.

The TPM reference stack [64] is a security-critical C code-

base of 60K LoC. It exposes a single entry point that processes

a TPM command. The TPM stack requires only a <10 LoC

patch to add RISC-V support. A single annotation is needed

to run it isolated from the I/O compartment, as the TPM

stack is already designed assuming distrust with callers.

Microvium [42] is an embedded JavaScript interpreter of

~6K LoC. It runs unmodified on CHERIoT. We provide Mi-

crovium as a shared library, requiring changes that would

not be needed for a private copy in a compartment (total

114 LoC): we set macros defining memory (de-)allocation

functions to use the default allocation capability, and an

export macro to our library export attribute.

From this experience, we believe that we achieve a level

of source compatibility comparable to moving to any new

embedded platform, while providing significantly more secu-

rity. Integrators can choose to develop more or less complex

wrappers to benefit from CHERIoT’s security full potential.

5.3 Memory Usage and Performance Evaluation

Setup and baseline. We run all experiments on an Arty

A7-100T FPGA board, set up at 33 MHz and with 256 KiB of

SRAM. We compile all code with -Oz to favor code size over

performance. To the best of our knowledge, there are no

comparable baseline systems: existing embedded platforms

do not support fine-grained isolation and memory safety on

such small systems and other embedded OSes do not run

on the CHERIoT hardware without significant porting ef-

fort. Thus, we evaluate through an ablation study (§5.3.1),

microbenchmarks (§5.3.1, §5.3.2), and a case study (§5.3.3).

Hardware performance. How does the CHERIoT core influ-
ence the performance of the overall system? Our main hard-

ware implementation (§5), is aggressively optimized for core

area at the expense of performance. CHERIoT adds about

4.5% more area than a 16-entry PMP [50] (the RISC-V equiv-

alent of an MPU [11]), which represents a negligible cost

on most SoCs used for IoT deployments. The performance

overhead is 20.65% on CoreMark [93] (bare metal), versus

non-CHERI RISC-V 32E. Some of the overhead is due to the

load filter (~8%) and to the size of the memory bus (~8%)

which is widened from 32 bits to only 33 for the tag bit to

limit area cost, but now requires two bus reads to load a

64-bit capability. This implementation matches low-cost de-

vices: in comparison, the Raspberry Pi Pico has a 192-bit

memory bus [80]. Some of the overhead is also due to the

temporal memory safety check and to an immature compiler.

We evaluate the hardware in detail in [9]. We now focus on

the overheads specific to our OS and compartment model.

5.3.1 Memory Usage. Low-end chips (<$1) typically have

as little as 128 KB of NVRAM for program code, and 32 KB

of SRAM. More expensive chips used for networked appli-

cations often have up to 1 MB of flash and 512 KB of SRAM.

We demonstrate that we can cater to both (P3).

Code size. Code must fit in NVRAM (often flash memory)

and SRAM where it is loaded at boot time. On low-end de-

vices code may be eXecuted In Place (XIP) in flash. Our base
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Table 2. Code and data size of CHERIoT RTOS components.

Component Code Size % of which for wrapper Data Size

Base System 25.9 KB - 3.7 KB

In
cl
ud

in
g1 Loader 7.5 KB 0 %

2
66 B

Switcher 1.4 KB 0 %
2

0 B

Allocator 9 KB 0 %
2

56 B

Scheduler 3.3 KB 0 %
2

472 B

Base + Network Stack 151.8 KB - 20.4 KB

In
cl
ud

in
g1

Firewall + Driver 6.6 KB 0 %
2

176 B

TCP/IP 38 KB 23 % 1.1 KB

DNS Resolver 3.6 KB 0 %
2

400 B

SNTP 4.2 KB 47.2 % 56 KB

TLS 56 KB 8 % 24 KB

MQTT 11 KB 28 % 24 B

1
Not detailing shared libraries, stacks, and compartment/library metadata.

2
No wrapper since these are native components (see Fig. 5).

system fits in 25.9 KB (Tab. 2), and 18.4 KB without the loader

which is erased at boot time. This increases to 84.8 KB with

a network stack (151.8 KB with TLS and MQTT), similar to

Tock [55], which requires 87 KBwith a simpler network stack.

Compatibility and hardening wrappers represent a variable

portion of ported components (8%-47%, Tab. 2). BearSSL’s

wrapper is comparatively small as its APIs simplify fault

tolerance and directly map to those we expose. Conversely,

our SNTP and MQTT wrappers expose higher-level com-

partment APIs, encapsulating part of what would usually

be application code. As discussed in §5.2, the size of wrap-

pers can be traded off. Code size will further reduce as our

CHERIoT compiler improves to match upstream RISC-V.

Data and heap usage. The overall SRAM usage consists of

(a) code if not using XIP, (b) data and BSS (including stacks

and per-thread data), and (c) heap usage. The base system

requires 3.7 KB of data (Tab. 2), and no heap. The data size is

dominated by the 1.5 KB of stacks and 400 B of trusted stacks,

required for the minimal two-thread system (scheduler and

application), and 1 KB of compartment and library metadata,

such as the import and export tables. This brings the overall

base usage to 29.6 KB without XIP, small enough to fit low-

end deployments. The network stack setting requires 20.3 KB

of data, mainly stacks (12.3 KB), trusted stacks (1.15 KB), and

compartment and library metadata (2.1 KB). Heap require-

ments depend on the workload, e.g., a heap of size 1.5 KB

is needed to run a functional network stack that can reply

to pings. This brings the base cost of the full networked set-

ting to 173.6 KB, fitting devices typically used for networked

applications. We provide an end-to-end example in §5.3.3.

Per-compartment usage. The base overhead for each ad-

ditional compartment (i.e., moving a function into a new

compartment) is 83 B, though post-link firmware footprints

can increase or reduce due to alignment paddings. This com-

pares favorably to Tock processes, which require 164 B [55].

5.3.2 Performance Microbenchmarks. We now evalu-

ate the performance of our isolation primitives and core APIs,

and discuss how they satisfy our target deployment (P3).

Cross-compartment call overheads are due to: (a) an indi-

rect call through the switcher, which (b) performs checks and
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Figure 6. Performance microbenchmarks.

bookkeeping and (c) zeroes stacks. Fig. 6a shows that it takes,

on average, 209 cycles to perform an empty compartment call

(repeated twenty times with one call for warm-up). This cost

increases as caller and callee use more stack: used stack mem-

ory must be zeroed to avoid caller-leaks on the call path, and

callee-leaks upon return. For example a compartment call

that uses 256 B of stack costs 452 cycles, similar to the cost

of a traditional null system call. In the unlikely worst case

where 1KiB of stack must be zeroed for both caller and callee,

the round trip costs 1284 cycles, which still compares favor-

ably to Donky [87] (2136 cycles). Overall, our design favors

memory usage over performance: the cost of zeroing is funda-

mental to using a single stack with mutually-distrusting do-

mains, and a performance-oriented design should maintain

separate per-domain stacks. Additional hardware features

can also reduce the cost of stack clearing [32, 33, 43, 106].

Interrupt latency is a factor of (a) the time to transition

to the scheduler, signal the event, and schedule the thread

that handles it, and (b) the time spent (by other threads)

with interrupts disabled. The former is a property of the core

OS code and the latter of a given firmware image. Different

use cases have different latency requirements, so we provide

tools for auditing (§4), rather than a one-size-fits-all solution.

We measure (Fig. 6a) interrupt latency using the hardware

revoker: from a high-priority thread we 1) ask the revoker for

an interrupt, and 2) wait on its interrupt futex; meanwhile,

from a low-priority thread we 3) constantly record the cur-

rent timestamp into a 𝑡𝑠 variable, until 4) the high-priority

thread awakes from the revoker IRQ and records a 𝑡𝑒 times-

tamp. The interrupt latency (𝑡𝑒 − 𝑡𝑠 ) is 1028 cycles (31 𝜇s at

33 MHz), on average, which is within typical RTOS task-level

interrupt latencies (500-1500 cycles [31, 75]), and satisfies the

higher-range of real-time requirements [75]. Real-time appli-

cations could extend the CHERIoT architecture to domain-

switch in hardware and deliver interrupts directly into com-

partments [75, 77], similarly to TrustZone-M’s secure inter-

rupts [13] and auditable in the same way as interrupt futexes.

Memory allocator throughput. A shared heap is a key

part of our contribution, but it is only useful if it can keep up

with allocation rates. Fig. 6b shows allocator throughput as

a function of allocation size: we allocate and free identically-

sized buffers for a total allocation amount of 8x the heap size,

which is set to 228 KiB (out of the 256 KiB of memory).
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Table 3. Average latencies of core APIs (in CPU cycles).

CHERIoT RTOS API Latency

Opaque Objects

(§3.2.1)

Unseal an object 44.8

Allocate a sealed object 2432.2

Allocate a new key 688

Interface Hardening

(§3.2.5)

De-privilege a pointer <10

Check a pointer 44

Ephemeral claim 182

Heap claim + unclaim 3714

Error

Handling

(§3.2.6)

No Handler

(default)

Non-error path 0

Fault and unwind 109

Global

Handler

Non-error path 0

Fault and unwind 413

Scoped

Handler

Non-error path 87

Fault and unwind 222

We observe two main performance regimes. With buffers

below 32 KiB ( A ), throughput is dominated by compartment-

call latency (two per buffer, malloc and free), increasing expo-

nentially as the number of crossings halves. Most network

traffic uses buffers of over 1 KiB, which yields ~5 MiB/s, more

than enough to keep up with a 10 Mbit network connection.

Real-world IoT uses rarely need even a fraction of this rate,

leaving many cycles for the real work. After 32 KiB ( B ) the

revoker becomes a bottleneck, as fewer objects can be allo-

cated in the heap at any time. Past 80 KiB ( C ) the heap can

fit only two objects, and a single one after 112 KiB ( D ): these

pathological and unrealistic cases synchronize the revoker:

the revoker will kick in at free, which is immediately followed

by malloc, thus blocking the caller until the end of the sweep.

Core APIs. Tab. 3 shows the performance of our core APIs

(§3.2). Operations that typically happen at every call, such as

unsealing an object and checking inputs, are cheap. Costly

operations are one-offs that take placewhen setting up a com-

partment (e.g., new sealing key) or a new flow (e.g., allocating

a sealed object). Error handling is in the order ofmagnitude of

a compartment call, sufficient to swiftly recover from faults.

5.3.3 Case Study. We demonstrate that our OS can run

realistic workloads, composed largely of existing code, with

the hardware budget of a cheap IoT deployment. We imple-

ment a JavaScript application that connects to a private IoT

cloud back-end via MQTT over TLS and subscribes to notifi-

cations. When it receives a notification, it flashes the board’s

LEDs. This represents a generic class of IoT workloads that

perform local actions and communicate with a back-end net-

work service. Most of the code in this application is from

third-party components (MQTT, TLS, TCP/IP, Microvium, cf.

Fig. 5). Typical IoT cores run at 25-100 MHz: to match this,

the FPGA board is clocked at 33 MHz and features only a

simple network adaptor with no offload features.

This deployment has 13 compartments and requires 243 KB

of memory (182 KB for code, 28 KB for data, 33 KB for the

heap), fitting the profile of a cheap IoT device. We demon-

strate full-system performance by reporting the CPU load for

a run of the system (Fig. 7). We gather CPU load with an idle

thread that wakes up every second to get a timestamp, query
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Figure 7. Full-system CPU load for an IoT deployment on

CHERIoT RTOS, including a micro-reboot at 𝑡 = 34𝑠 .

the scheduler for the time spent idle, and calculate the CPU

load since the last timestamp. We also collect a timestamp at

the beginning of each execution phase. This instrumentation

takes ~10 KB of code, data, and heap, included in the above.

The initial phase (Setup in Fig. 7) allocates memory and

prepares the network stack (e.g., DHCP, ARP). This is mainly

spent waiting on the network (average load of 35%). We

then synchronize the clock with a remote NTP server. These

10s are entirely spent idle waiting on the network. The next

phase (App. Setup) performs a DNS lookup of theMQTT back-

end, establishes the TCP/TLS connection, and subscribes

to an MQTT event. Without crypto-acceleration hardware,

clock frequency is the bottleneck with an average load of 92%.

The next phase shows the steady state: for the next 7s

we wait for notifications. At 𝑡 = 34𝑠 , we trigger a crash by

introducing a “Ping of death” bug. This demonstrates a micro-

reboot of the TCP/IP stack which completes in 0.27s, at which

point the application re-establishes a connection with the

server. 12s later the application is back to waiting for a no-

tification. We send one 5s later, after which we stop tracing.

Over the whole 52s that we measure, the CPU usage is

46.5% on average, mainly waiting on the network. We be-

lieve that this demonstrates that our platform’s end-to-end

security guarantees fit well within acceptable performance

requirements, even with a cheap microcontroller.

6 Related Works

This section is designed to be read along with Tab. 4.

Language-BasedOSes.Many priormemory-safe OSes lever-

age safe languages. Among others, Singularity [41] uses

memory safety for isolation, and Tock [55] builds on the Rust

type system (both in Tab. 4). Safe languages are beneficial

and compose harmoniously with CHERIoT, which supports

embedded JavaScript and Python, with Rust support ongoing.

Still, OSes that purely rely on language-based isolation re-

quire rewriting software, whereas we can securely run large

existing C/C++ components (P5). Further, pure language-

based approaches do not realize our defense-in-depth vision

as they have a large TCB and do not address supply-chain

problems. For example, there are known soundness bugs

in rustc that can be exploited by malicious code to violate

Rust’s safety model [59]. Sharma et al. [90] expand on the

limitations of Rust for embedded systems.
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Table 4. Comparison of key design aspects of the CHERIoT RTOS with the closest prior works.

MMU-

less

Spatial

Memory Safety

Heap Temporal

Memory Safety

Call-Stack Temporal

Memory Safety

Fine-Grain

Compartments

Fault-Tolerant

Compartments

De-Privileged

TCB

Interface-

Hardening APIs

Auditing

Support

Singularity [41] Partial (S) Yes Yes Yes No No No No No

Tock [55] Yes Partial (K) Partial (K) Partial (K) No (T) No No No No

tz-datashield [49] Yes No No No Yes No No No No

CheriBSD [1] No Yes (M) Partial (A) (M) No Partial (A) No No No No

CheriOS [23] No Yes (M) Yes (M) Yes (M) Yes Yes Yes No No

CheriRTOS [104] Yes Yes No No No No No No No

CompartOS [8] Yes Yes No No Yes Yes No No No

CHERIoT (this work) Yes Yes Yes Yes Yes Yes Yes Yes Yes

(S) Singularity is not designed for MMU-less systems, but its design can be applied to MMU-less systems; (K) Kernel-only; (A) Application-only. (M) MMU-based;

(T) Tock also has fine-grain "capsules", but these enforce weaker isolation and are kernel-only [7].

Embedded Compartmentalization. Most prior works to

secure embedded systems use existing hardware such as the

MPU or TrustZone [18, 36, 45, 46, 49, 55, 77, 109] (see [49]

in Tab. 4). This constrains these works to coarse-grained

isolation [92], limiting their security and usability benefits.

Most also aim to automatically retrofit isolation into existing

embedded software [18, 45, 46, 49, 109]. This makes it hard

to effectively harden system and compartment interfaces,

vital to obtain tangible security benefits [52, 53]. Their focus

on memory isolation also prevents them from attaining fault

tolerance, memory safety, or protection against supply-chain

attacks, all important in the embedded space.

CHERI-Based OSes. We are not the first to build an OS

leveraging CHERI capabilities. The system with the closest

security properties is CheriOS [23] (in Tab. 4). CheriOS, like

CHERIoT, enables fine-grain, fault-tolerant compartments.

It also features a de-privileged TCB whose nanokernel resem-

bles our switcher. However the design of CheriOS targets

large, 64-bit multi-core deployments and heavily uses vir-

tual memory, making it inapplicable to embedded settings

(P3). In the embedded space, CheriRTOS [104] introduces

the first CHERI 32-bit capability format, and CompartOS [8]

proposes to use linkage units as compartments and support

fault tolerance (both in Tab. 4). The limitations of these sys-

tems motivate our hardware-software co-design: they do not

consider temporal memory safety (P1), offer no or limited

support for compartment interface hardening (P2), do not

benefit from the API design principles we explore in §3.2,

and do not support firmware auditing (P5).

Capability OSes andObject Capabilities. CHERIoT builds

on a long history of capability OSes [28, 37, 44, 89, 100, 102]

and programming languages [20, 62, 65–67]. Early capabil-

ity OSes such as the Cambridge CAP [100], Hydra [102],

KeyKOS [37], EROS [89], and later L4 𝜇kernels [22, 48] pi-

oneered the use of capabilities to facilitate isolation and

sharing, but capabilities remained limited in what they could

represent, where they could be stored, or how they could

be used. Capabilities later transitioned into programming

languages with object capabilities [62, 65, 66]. CHERI gen-

eralized this into an architectural capability mechanism that

can be used not only for access control but also for mem-

ory safety and fine-grain compartmentalization [99, 101].

CHERIoT extends this line of work to achieve memory-safe,

finely-compartmentalized embedded systems. The influence

of foundational works is still visible. Ourmechanisms for safe

delegation (§2.1) remind Hydra’s EnvRts [57], which prevents
a callee from keeping a capability after returning, or EROS’

weak capabilities [89], which enforce transitive read-only

access. Our opaque objects (§3.2.1) can be viewed as software-

defined, hardware-accelerated object capabilities [65]. We

establish them as a key API paradigm to facilitate fault recov-

ery, making our opaque objects an optimization of historical

object capabilities towards dependable embedded systems,

where they have a single type and uniform access policies.

7 Concluding Remarks

We showed that, by rethinking hardware and software, it

is possible to construct a highly-secure embedded OS that

scales down to cheap devices. Unlike most prior work using

existing hardware and memory-safe languages, we achieve

both a fine grain of privilege separation and use existing

C/C++ codebases with few changes. Though our work has

focused on embedded systems, many of the ideas in our

design are applicable to larger systems.
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