N)
)
Check for
updates

CHERIoT RTOS: An OS for Fine-Grained Memory-Safe
Compartments on Low-Cost Embedded Devices

Saar Amar""* Tony Chen? David Chisnall>* Nathaniel Wesley Filardo>* Ben Laurie*
Hugo Lefeuvre®* Kunyan Liu** Simon W. Moore® Robert Norton-Wright>* Margo Seltzer®
Yucong Tao® Robert N. M. Watson® Hongyan Xia”:"*

L Apple, 2Microsoft, 3SCI Semiconductor, *‘Google, >University of British Columbia, *University of Cambridge, ’ARM Ltd.

Abstract 1 Introduction
Embedded systems do not benefit from strong memory pro- Embedded systems exist in ecosystems where pennies on
tection, because they are designed to minimize cost. At the the bill of materials can be the difference between profit and
same time, there is increasing pressure to connect embedded loss for the manufacturer. Thus, embedded devices are of-
devices to the internet, where their vulnerable nature makes ten deployed with fewer security features than conventional
them routinely subject to compromise. This fundamental devices to cut costs, for example, without an MMU [92]. On
tension leads to the current status-quo where exploitable top of this, they generally run legacy software stacks written
devices put individuals and critical infrastructure at risk. in unsafe languages. Sacrificing security for cost, combined
We present the design of a dependable embedded OS with the increased pressure to connect embedded devices to
where compartmentalization and memory safety are first- the Internet, creates a vulnerability storm. Botnets such as Mi-
class citizens. We co-design the OS with an embedded hard- rai [10] hoard hundreds of thousands of IoT devices, and their
ware platform that implements CHERI capabilities at a sim- impact grows every year [24, 34, 70, 73, 76, 94, 97]. Vulnera-
ilar cost profile to existing chips with minimal security. We ble IoT control systems are also a growing concern, routinely
demonstrate key design benefits: fine-grained fault-tolerant compromising critical infrastructure [35, 61, 84, 86, 95].
compartments, OS-level support for compartment-interface The specific nature of embedded hardware and software
hardening, and auditing facilities to thwart supply-chain at- exacerbate the vulnerabilities that cheap hardware makes
tacks, among others, and show that they come at a memory possible. Embedded software often has complex multi-vendor
usage and performance cost that allows their widespread auditing requirements that constrain how software com-
deployment in cheap, resource-constrained devices. ponents are distributed and integrated. For example, soft-

ware that directly interfaces with hardware might be sup-
plied in binary-only form [81], e.g., because that specific
binary passed regulator approval [82]. These requirements

CCS Concepts: « Security and privacy — Operating sys-
tems security; Embedded systems security.

ACM Reference Format: must compose with increasingly complex software supply
Saar Amar, Tony Chen, David Chisnall, Nathaniel Wesley Filardo, chains [105, 107, 108]: parts may be developed in-house or
Ben Laurie, Hugo Lefeuvre, Kunyan Liu, Simon W. Moore, Robert adopted from external (open-source) vendors or SDKs. Em-

Norton-Wright, Margo Seltzer, Yucong Tao, Robert N. M. Wat-
son, Hongyan Xia. 2025. CHERIoT RTOS: An OS for Fine-Grained
Memory-Safe Compartments on Low-Cost Embedded Devices. In
ACM SIGOPS 31st Symposium on Operating Systems Principles (SOSP . o
’25), October 13-16, 2025, Seoul, Republic of Korea. ACM, New York, present on many IOW-COSt dev1cesf to be. I}SEd for attrlbut%on
NY, USA, 18 pages. https://doi.org/10.1145/3731569.3764844 as much as for security. These particularities make the design
of dependable embedded systems especially challenging.

Prior works on securing embedded OSes [18, 36, 45, 46,
_ 49, 55, 77, 109] use existing hardware such as the MPU or
Authors are listed in alphabetical order. . . o .
X . TrustZone for memory isolation, limiting these solutions
F Work conducted while at Microsoft. . . .
* These seven authors made significant contributions to the design and to coarse-grained isolation [92]. Further, most works auto-
implementation, without which the project would not have been possible. matically retrofit memory isolation into existing embedded
software [18, 45, 46,49, 109]. This causes a lack of research on
hardening interfaces, needed for strong isolation [52, 53] and
. a lack of research on enforcing availability, memory safety,
or thwarting supply-chain attacks [51], all important in the

bedded systems also have attribution requirements (who is
liable when software causes damage?) [47], leading to secu-
rity features such as the memory protection unit (MPU) [11],

This work is licensed under a Creative Commons Attribution 4.0
International License.

SOSP *25, Seoul, Republic of Korea embedded space. Other works use safe languages [55, 56]
© 2025 Copyright held by the owner/author(s). which are not ideal either [90], e.g., rewriting software is
ACM ISBN 979-8-4007-1870-0/2025/10 often impracticable for cost-sensitive devices.

https://doi.org/10.1145/3731569.3764844

67

https://doi.org/10.1145/3731569.3764844
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3731569.3764844
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3731569.3764844&domain=pdf&date_stamp=2025-10-12

SOSP 25, October 13-16, 2025, Seoul, Republic of Korea

Operating System (this paper)

Target Low-Cost Devices Easy Auditing

builds on

Full Memory \

Easy to Retrofit

I i
. builds on
builds on Fine-Grained, Fault-

Tolerant Compartments

builds on

Safety

builds on

Safer
Delegation

CHERIoT
Hardware-Software Co-Design

Hardware Support for
Temporal Memory Safety

More Expressive
Sealing

No MMU (CHERI-only) CHERI Capabilities

ISA and Hardware Platform (described in [9])

Figure 1. The CHERIOT hardware-software co-design.

We present the design of a dependable embedded OS
where isolation and memory safety are core primitives. We
design this OS together with the CHERIoT core [9] (com-
mercial silicon expected in 2025 [88]), a specialized imple-
mentation of CHERI capabilities [98] that fits the same area
and power costs as existing embedded devices. We show
that, building upon this hardware, we can implement truly
fine-grained fault isolation and fault tolerance at both code
and thread boundaries. We demonstrate how these hard-
ware primitives and the OS APIs we build upon them enable
seamless hardening of compartment interfaces and complex
delegation patterns. We also show how our platform can be
mechanically audited to help detect supply-chain attacks and
programming errors. We envision deploying these benefits at
scale and show that they can be achieved on a tiny embedded
core with only tens of KBs of SRAM. Our platform can run ex-
isting embedded code such as the Microvium [42] JavaScript
engine, the FreeRTOS TCP/IP stack [5], and the BearSSL TLS
stack [79], providing a simple migration path for existing sys-
tems. Similar techniques are applicable to larger systems: we
aim, through this work, to showcase ideas that are valuable
at other scales. The CHERIoT platform is open-source [2].

2 CHERIoT: Hardware-Software Co-Design

We claim that a clean-slate approach to the entire hardware-
software stack is needed to improve embedded security. We
begin with an overview of the CHERIoT hardware archi-
tecture, described in a separate publication [9], and then
highlight the core design ideas of our OS. The link between
both parts of the co-design is illustrated in Fig. 1.

2.1 The CHERIoT ISA and Hardware Platform

The CHERIoT ISA is an implementation of CHERI capabil-
ities [98] specialized for embedded systems. A CHERI capa-
bility is a hardware pointer type that carries a cursor, the
address to which it points, permissions, and bounds within
which the cursor may range. The lower bound is called base.
In CHERIoT, all pointers are implemented as CHERI capabili-
ties. This allows the hardware to enforce deterministic spatial
memory safety by checking bounds at each memory access,
and to enforce compartmentalization [98]. Each capability
is associated with a non-addressable CHERI tag bit. If the

68

Amar et al.

CHERI tag is cleared, the capability becomes invalid. The tag
attests that the capability stems from a permitted sequence
of rights non-increasing operations. Invalid operations on a
capability (e.g., overwriting part of it) automatically clear
the CHERI tag of the capability. Using an invalid or out-of-
bounds capability traps before the operation is performed.
We now focus on the core architectural features specific to
CHERIOT that enable our OS design. Each of these points is
covered in details in the dedicated publication [9].

No MMU. Unlike existing CHERI systems, CHERIoT has no
MMU (or MPU [11]) so CHERI is the only isolation mechanism
present. This is necessary not only for the low-cost devices we
target [92], but also for the real-time CHERIOT use-cases by
removing nondeterministic latencies that arise from caches
with a conventional MMU and page-table walker.

Heap temporal memory safety. When we deallocate a
heap object, we must invalidate all capabilities pointing to it
(wherever they are in memory) to achieve temporal memory
safety. Existing CHERI systems implement this by repur-
posing MMU features [26], but these are absent on most
embedded devices. Instead, CHERIoT enables deterministic
temporal memory safety via two new hardware features.

The load filter makes capabilities that point to a freed
heap object unusable when they are loaded into registers. In
CHERIO0T, each eight-byte granule of heap memory is associ-
ated with a revocation bit, stored in a separate SRAM region.
When an object is freed, the allocator sets the revocation
bit for each granule of the object. Later, whenever a capabil-
ity is loaded from memory, the CPU’s load filter checks the
revocation bit corresponding to the base of that capability,
and, if set, clears the capability’s CHERI tag. The bounds
of a capability can be only reduced, not increased, so the
address of the base is guaranteed by the hardware to always
be within the bounds of the original allocation.

The revoker enables reuse of freed heap memory. The re-
voker iteratively scans every capability in memory, invalidat-
ing any that point to freed memory. This happens in parallel
to normal CPU execution.! Once all memory has been swept,
we know that no valid capabilities exist to any object that was
freed before the sweep: the revocation bits can be cleared and
memory from freed objects can be reused for new allocations.
Safe delegation. Compartments need to share (delegate) ob-
jects across trust boundaries. Prior CHERI systems support
this via two mechanisms. First, the permit-load, permit-store, and
permit-exec permissions on capabilities, which encode read,
write, and execute rights for the memory referenced by the
capability. These can be stripped to enforce fine-grain, yet
shallow access control: though permit-store (which encodes
write rights) may be removed from a capability c;, it may still
be present on a capability c; reachable in the memory pointed

ISweeping the whole memory on an embedded system is practical: a full
sweep on a 250 MHz chip with an ample 1 MiB of SRAM takes ~1.5 ms with
a simple revoker [9]. Commercial devices [88] have further optimizations.

CHERIoT RTOS: An OS for Fine-Grained Memory-Safe Compartments
on Low-Cost Embedded Devices

to by c;. Second, the global permission which, when stripped
from a capability ¢y, forbids storing ¢, except through a capa-
bility that has the pernit-store-local permission. The only such
capabilities in our OS are stacks, which are themselves non-
global, and register-save areas. This prevents non-global point-
ers and pointers to the stack from being stored anywhere
other than on the stack, enforcing a shallow no-capture guar-
antee: an untrusted callee cannot keep a non-global argument
c; after returning, but may keep a global c; loaded through c;.
These permissions are insufficient to secure compartment
interfaces because they are shallow. CHERIoT adds two capa-
bility permissions to solve this. The first, permit-load-mutable,
enforces deep immutability: if ¢, lacks this permission, any
capability ¢, loaded through c¢; will have its permit-store and
permit-load-mutable permissions removed. This enables passing
a pointer argument while ensuring that a bad callee cannot
modify anything reachable from that pointer. The second
permission, permit-load-global, enforces deep no-capture: if ¢;
lacks this permission, any c; loaded through c¢; will have its
global and permit-load-global permissions removed, preventing
a callee from capturing anything reachable from that pointer.
More expressive sealing. The sealing mechanism, present
in existing CHERI ISAs, is another architectural approach to
protect compartment interfaces. Sealing transforms a capa-
bility into one that can be loaded and stored but not used or
modified except via an explicit unseal operation. Sealed ca-
pabilities have an object type, and both sealing and unsealing
operations are capability-mediated: (un)sealing a capabil-
ity of a particular type requires an authorizing capability
matching that type. As we show, sealed capabilities are key in
enabling distrusting compartments to safely share opaque ob-
ject references (§3.2.1). The sealing mechanism also enables
sealed entry (sentry) capabilities, which are sealed executable
capabilities unsealable via a jump instruction. These enable
granting access to a function without exposing any data
that might be accessed via program-counter (PC)-relative
addressing within that function. We also use sentries to
protect return addresses by sealing the return capability as a
sentry, allowing the callee to jump back only to that address.
CHERIOT refines CHERI’s notion of sentries to carry se-
mantics with respect to enabling and disabling interrupts.
It discriminates between forward (call) and backward (re-
turn) control flow. A forward sentry can optionally specify
a change of interrupt status (enable/disable), and match-
ing backward sentries restore the interrupt status if it was
changed. Non-TCB software cannot directly enable or defer
interrupts; instead, functions may be annotated with their
desired posture, to be adopted at invocation. This enforces
a structured programming model on interrupt posture and
facilitates auditing of code that disables interrupts.

2.2 Co-Designing an OS with the CHERIoT hardware

We co-design the hardware platform with a clean-slate em-
bedded OS and programming model (upper part of Fig. 1).

69

SOSP °25, October 13-16, 2025, Seoul, Republic of Korea

2.2.1 Threat Model. Attackers aim to compromise the
integrity, confidentiality, or availability of the system. They
may do so by exploiting software vulnerabilities (e.g., from
the network for an IoT device) or by attacking the software
supply-chain to backdoor software parts. We assume that the
Trusted Computing Base (TCB), discussed next, is bug-free
and not backdoored. We do not assume any correctness prop-
erties for compilers used for untrusted components, an at-
tacker is assumed to be able to run arbitrary instructions in a
compartment. We assume that the CHERIoT hardware is free
of bugs and side channels. CHERIoT benefits from CHERI’s
formal verification [30, 72], and both CHERIoT hardware and
software are currently being formally verified [21, 78]. Phys-
ical attacks (e.g., tampering with the device) are out of scope.

2.2.2 Approach. We build on five high-level principles:

(P1) Full memory safety. Memory-safety bugs remain the
most prevalent type of security vulnerabilities [96]. We sys-
tematically mitigate them. CHERI enables spatial memory
safety; our allocator complements this with temporal mem-
ory safety leveraging the CHERIoT architecture (§2.1). With
CHERI, memory-safety bugs still harm availability since they
cause a fault: we leverage compartments, introduced next,
for fine-grained fault handling.

(P2) Fine-grained fault-tolerant compartments. We de-
sign a hybrid compartment model [53] where compartments
isolate at code boundaries and threads isolate flows across and
within compartments, to isolate other types of bugs and con-
tain the impact of memory-safety faults on availability. This
model enables us to implement least privilege at a fine gran-
ularity and adapt isolation strategies to the specifics of each
component. We make it easy to secure compartment inter-
faces by designing APIs that build on CHERIoT’s hardware
features (§2.1) to thwart interface vulnerabilities [52]. Our
compartments are fault-tolerance boundaries: our OS design
enables easy micro-reboot [16] of compartments.

(P3) Fit low-cost embedded deployments. We target inex-
pensive devices with 10s-100s KB of RAM. To fit such mem-
ory constraints we must trade-off memory usage and per-
formance. We contribute a memory management approach
centered on a unified heap with a quota system that enables
compartments to easily and safely share memory.

(P4) Easy to audit. Integrators [39, 91] should be able to sys-
tematically audit firmware images to detect policy violations
at the integration level. We enable this by adopting a static
isolation model where compartments and threads are fixed
at build-time. We combine this with a linker that produces
a human- and machine-readable report of the structure of
the system, and develop tooling to verify that these reports
conform to given policy requirements.

(P5) Easily integrate with existing code-bases. Embedded
software is usually compiled targeting specific SoCs, so we
do not try to be binary compatible. However, we do try to
minimize source-code changes, and do so through wrappers

SOSP 25, October 13-16, 2025, Seoul, Republic of Korea

D Compartment boundary

Boot Time Run Time

—» Runtime dependency

O
Loader 4—| Microvium |

) Q Fully trusted @ Trusted only for isolation
1<
=

Trusted only for heap @ Trusted only for scheduling
memory safety

4
Scheduler

@
®

Allocator

Figure 2. Overview of the TCB when running a JavaScript
program (some non-TCB compartments are omitted).

that encapsulate legacy components to retrofit our compart-
ment model (e.g., harden interfaces and add fault tolerance)
and interface with our platform APIs.

3 Design of the CHERIoT RTOS

We now illustrate how CHERIoT RTOS embodies the princi-
ples laid out in the previous section by introducing its core
OS components, its architecture, and its APIs.

Compartments and threads. Our OS instantiates the hy-
brid compartment model described in P2. A compartment is
a static isolation abstraction that encapsulates code and data.
Compartments can share code via shared libraries. They can
also share data, either statically via code annotations or at
run time. A thread is a statically-created schedulable entity
composed of a stack, a register state (in registers or saved),
and a trusted stack (discussed in §3.1.2). At any point in time,
a thread executes in exactly one compartment. Threads can
move from one compartment to another via compartment
calls into pre-defined entry-points. Compartment calls can
take arguments and return values, similarly to function calls.
Threads can access only their current compartment’s code
and data, the call’s arguments, a subset of their stack exclu-
sive to the call, and transitively reachable resources. While
threads can exchange capabilities and data through shared
memory (e.g., compartment globals), they are otherwise iso-
lated from one another to provide flow isolation.

Fault tolerance. At any given time, the CHERIoT core runs
one thread, though multiple threads (in the same compart-
ment or not) may share the core with preemptive scheduling.
A thread that encounters a fault, e.g., due to a memory-safety
violation, invokes the developer-provided error handler for
that compartment. The handler might unwind the thread out
of the compartment and/or micro-reboot [16] the compart-
ment (i.e., reset it into a pristine condition, §3.2.6). Our design
fundamentally simplifies micro-reboots: fine-grained isola-
tion of compartments and threads reduces reset complexity
and latency; isolation and capabilities enable easy segrega-
tion of state; and components are inherently decoupled with
well-defined, hardened, and retryable APIs.

Shared libraries. We allow compartments to easily share
code with a shared library abstraction. A shared library does
not define a new security context, and its code executes
within the caller’s security domain. Shared libraries must

70

Amar et al.

Capability
Registers

(B)

B
Program | A’s Code | A’s Read-only Globals\rﬁl’s Import Table |
Counter N

— PC-relative addressing

Global A
Pointer \bl A’s Globals | 94’5 Export Table l

— Capability
--» Sealed Capability [Z] Read-Write access by A

S bevice s]
‘Memory (MMIO) |

Compartment A Ly

Compartment B

B’s Export Table

(etc.)
[Read-only by A [] No access by A

Figure 3. Simplified overview of a CHERIOT compartment.

not have mutable globals, to ensure that they cannot trans-
fer or leak state between calling compartments and threads.
This enables a programming model equivalent to each li-
brary function being copied into the compartment that calls
it, without the corresponding memory overhead which is
crucial for our embedded deployment (P3).

Trust. The TCB of the OS includes only four components:
the loader, the switcher, the allocator, and the scheduler (see
Fig. 2). We take a strong stance on the principle of least priv-
ilege [85]: aside from the loader which is fully trusted (but
only runs at boot time), no runtime component, even in the
TCB, runs with all privileges, e.g., none can access all of the
memory. Instead, we trust each TCB compartment to enforce
a specific security property, whose failure would impact an as-
pect of confidentiality, integrity, or availability, but would be
insufficient by itself to take complete control of the system.

3.1 OS Architecture Overview

Let us go through the components of the TCB (Fig. 2): the
loader, the switcher, the memory allocator, and the scheduler.

3.1.1 The Loader (®). The loader runs on boot to start up
the system. Its only input is the firmware image. The loader
has access to the omnipotent root set of CHERI capabilities,
which it refines to populate all initial capabilities in memory,
based on compiler-generated metadata from the firmware.
The loader sets up compartments (Fig. 3). This includes
two per-compartment tables used for compartment calls and
shared-library calls. The export table (® in Fig. 3) contains
a capability to the compartment’s code and metadata de-
scribing its entry points. It is directly accessible only to the
switcher (® in Fig. 2). The import table (®) is accessible
read-only to the compartment via PC-relative addressing
and contains the only capabilities that, after boot, may point
outside of the compartment: capabilities to MMIO regions
(©) granting access to device memory;® sentry capabilities
(§2.1) allowing direct invocation of switcher and library ex-
ported functions; sealed capabilities to the export table of
other compartments (©), unsealable by the switcher, for
compartment calls; and sealed capabilities to static opaque
objects and their matching unsealing capabilities (§3.2.1).

%In embedded C, pointers to MMIO devices are commonly created by casting
an integer address. With CHER], this will result in an invalid capability as we
cannot forge a capability. Instead, our loader derives such capabilities from
its omnipotent capability and exposes them to compartments. This import
table mechanism also exposes compartments’ MMIO access to auditing (§4).

CHERIoT RTOS: An OS for Fine-Grained Memory-Safe Compartments
on Low-Cost Embedded Devices

The net effect of the loader is to instantiate the initial ca-
pability graph described by the firmware. Its correctness is
key to the system’s confidentiality, integrity, and availabil-
ity. We thus design it to be deterministic to ease auditing,.
Moreover, the loader runs only during boot. We therefore
place it along with the firmware metadata it consumes in
SRAM that later becomes the shared heap. After boot, a small
assembly routine erases this memory before handing control
to the scheduler. This reduces size constraints on the loader,
which can thus use simpler code and a lot of invariant and
consistency checks to further ease auditing.

3.1.2 The Switcher (®). The switcher is responsible for
transitions between threads (context switches), between com-
partments (compartment calls/returns), and for first-level
trap handling. Context switches occur in response to traps
(cf. §3.1.4), whereas compartment calls are triggered via a
direct call into the switcher through the sentry in each com-
partment’s import table (® in Fig. 3). The switcher is the most
privileged component that runs after boot and contains ~355
assembly instructions (similar to the number of unverified in-
structions in seL4 [6]). A malicious switcher can compromise
availability (by deciding not to context switch) and partially
confidentiality and integrity as it can access each thread’s
register file and stack. However, the switcher cannot directly
access any other parts of the system’s memory.

Each thread has an associated trusted stack, which is a re-
gion of memory exclusively accessible to the switcher after
boot. It contains the register save area for context switches
and a small frame for every compartment call, allowing the
switcher to safely operate even if a compartment has cor-
rupted all the state to which it has access. The switcher (and
only the switcher) holds a PC capability with a special per-
mission which allows it access to a dedicated control register
containing a capability to the current thread’s trusted stack.

A compartment performs a compartment call by passing
the switcher a sealed capability from its import table (®
in Fig. 3) that points to the callee’s export table (©). Only
the switcher holds the capability that can unseal this sealed
capability, as it is the sole entity trusted to perform domain
switches. The base of the capability points to the beginning of
the callee’s export table, where the loader stored the callee’s
code and data capabilities. The cursor points to the target
entry in the callee’s export table, which describes the meta-
data for the call, including the offset of the target entry point
within the code capability, the number of argument regis-
ters, and the minimum required stack space. The switcher
pushes a new frame on the trusted stack describing the re-
turn address once this compartment finishes and then clears
all non-argument registers, truncates the stack capability, ze-
roes the new stack’s memory, and jumps into the callee. The
return path is similar: the switcher zeroes the stack, restores
the code, data, and stack capabilities from the caller, zeroes
all non-return registers, and returns to the caller.

71

SOSP °25, October 13-16, 2025, Seoul, Republic of Korea

3.1.3 The Shared Heap (®). The memory allocator ex-
poses a shared spatially- and temporally-safe heap. A shared
heap is a key part of our approach to lower embedded de-
ployment costs (P3). Embedded software often has each com-
ponent pre-allocate all of the memory it requires (e.g., by
storing everything in globals). In that case, the total memory
requirement (and thus the minimum price for a usable SoC)
is bounded by the sum of each component’s worst-case mem-
ory usage. A shared heap lowers this bound to the worst case
of the sum of the memory usage of all compartments at any
given time. This allows phases of computation that have dif-
ferent memory requirements to use time-division multiplex-
ing to share memory. This is the same reason why all OSes
for larger computers provide dynamic memory allocation.

We allow safe sharing of allocations at the level of sub-
objects from mutually-distrusting components. Heaps with
object-granular sharing were historically impracticable on
embedded devices due to the limitations of isolation mech-
anisms. Cheap devices often feature an MPU [11] (PMP [50]
on RISC-V) that supports eight domains. MPU regions must
be configured by a trusted component, making it hard to ex-
pose a simple programming model for sharing anything more
complex than a simple buffer. The low number of regions
results in a lot of over-privilege, and the need to track pro-
tection mappings complicates the TCB. CHERI capabilities
overcome these limitations. They can isolate at a fine grain,
eliminating fragmentation and over-privilege. Their unforge-
ability simplifies the allocator by removing the need to track
mapping metadata. Most importantly, they are exposed as
pointers in the source language, so sharing is expressed in
terms of language-level objects, not regions of address space.

The allocator is trusted for heap memory safety. A compro-
mise of the allocator will impact confidentiality and integrity
through leaking or tampering with heap-allocated data, as
well as availability through not fulfilling allocations (or doing
so incorrectly, to trigger faults). The concrete impact highly
depends on how much compartments rely on the allocator,
as the allocator has access only to heap memory.

At a high level, our allocator hands out capabilities to
ranges of memory and guarantees that a compartment can ac-
cess a heap object only if it has a pointer to it. When an object
is freed, the allocator sets the revocation bits corresponding
to the allocation (§2.1) and the CHERIoT load filter ensures
that these pointers cannot be used. The allocator must even-
tually reuse freed memory to satisfy our low-memory deploy-
ment model (P3), but such reuse must be done carefully to
preserve memory safety (P1) and compartmentalization (P2):

® Revocation. Re-using freed memory requires invalidating
all existing capabilities to that memory. Our hardware
revoker handles this (§2.1). Unlike prior works in larger
(CHERI) systems [25, 26, 103], accesses to freed objects trap
as soon as free returns rather than only after the revocation
pass has finished. The allocator alone may access freed

SOSP 25, October 13-16, 2025, Seoul, Republic of Korea

memory as it retains a privileged capability over the entire
heap, such that its loads do not consult the revocation bits.
e Quarantine. Memory associated with an object is safe to
reuse once there are no non-TCB capabilities held to it, i.e.,
after a full revocation sweep. Sweeps take time, thus our
allocator batches revocation, quarantining freed memory
until a revocation pass has been completed (which the allo-
cator can see through a hardware-exposed counter). The al-
locator alone can access freed data, so it limits its overhead
by using in-band metadata to track quarantine. Our alloca-
tor attempts to remove a small, constant number of objects
from quarantine on every malloc and free. Limiting that num-
ber bounds the run time of the allocator to satisfy soft real-
time constraints, and removing more than one object per
operation ensures that the quarantine eventually drains.
® Real-time behavior. Revocation is asynchronous and takes
variable time. Allocations may be delayed until the end of
a revocation pass. Though worst-case revocation time is
constant we, like all RTOSes, discourage from calling the al-
locator in phases with deterministic latency requirements.
e Zeroing. Allocations must not leak secrets from previously
freed data. We thus zero the entire heap on boot, and erase
objects in free(). The allocator’s exclusive access to freed
memory ensures that these zeros persist through to reuse.

3.1.4 The Scheduler (®). The scheduler is invoked by
the switcher to make scheduling policy decisions. On a trap,
the switcher’s trap entry point spills the registers into the
current thread’s register save area and checks the cause of
the trap. Protection-related traps are handled by the com-
partment itself if it provides an error handler (§3.2.6). Other
traps (e.g., timer or device-specific interrupt) are forwarded
to the scheduler: the switcher fetches a pointer to the sched-
uler’s stack from PC-relative storage, scrubs registers, and
calls the scheduler with a sealed capability to the saved state.
The scheduler then returns to the switcher with a sealed
capability indicating the next thread to run. For interrupts
other than the timer, this may be the thread responsible to
handle the interrupt in the appropriate compartment.

The scheduler can refuse to run threads, so it is trusted
for availability. However, it is not trusted for confidentiality
or integrity as it cannot unseal the stacks and registers of
interrupted threads and its outputs are carefully checked by
the switcher. Aside from its special switcher entry point, the
scheduler is a normal compartment that provides services
via compartment calls (e.g., futexes, see §3.2.4).

3.2 CHERIoT RTOS Programming Model and APIs

We contribute new APIs to fit the principles formalized in
§2.2.2. Our core OS is not POSIX or FreeRTOS compatible,
however, as we show in §5.2, wrappers can easily be imple-
mented to bring compatibility (P5). We now present the core
APIs and discuss how one can build new APIs on CHERIoT.
Tab. 1 gives an overview of the APIs covered in this section.

72

Amar et al.

Table 1. Overview of CHERIoT RTOS APIs presented in §3.2.

[APT [Key Idea

Opaque objects make it possible for a compartment
to pass a pointer to an object to another compartment
and later receive that pointer with assurance that the
object was not tampered with. This makes it easier to
harden interfaces, to reduce the amount of state in a
compartment, and to simplify error handling.

Opaque Objects
(§3.2.1)

Allocation capabilities embody the permission to allo-
cate and free heap memory. They are associated with
a quota to control compartment heap memory usage.
This enables the CHERIoT RTOS to enforce least priv-
ilege while supporting heap memory allocation.

Allocation Capabilities
& Quotas (§3.2.2)

Allocation capabilities can be delegated. This makes
it possible for a compartment to authorize another
one to perform heap operations on its behalf.

Quota Delegation
(§3.2.3)

Synchronization &
Communication (§3.2.4)

Build a rich set of de-privileged multi-threading APIs
atop a simple futex primitive.

Interface Hardening Provide mechanisms and APIs against most classes of

(§3.2.5) compartment interface vulnerabilities.
Error Handling Make it possible to define compartment-specific fault-
(§3.2.6) handling policies to enable fault tolerance.

3.2.1 Opaque Objects. Limiting the amount of global state
stored in each compartment is key to writing robust compart-
mentalized software. The more state a compartment holds,
the harder it is to assert that this state is correct and does not
break thread or flow isolation, and the harder it is to recover
from faults [14, 16]. We provide OS support for opaque ob-
jects to reduce the amount of state stored in a compartment.
Pointers to opaque objects can be exported (e.g., returned
from a compartment call) and later re-imported (e.g., passed
via another call) with assurance that the object was not tam-
pered with. Consider an SSL compartment: APIs only need
to access the state of one flow at a time, so flow state can be
opaquely returned (e.g., state tls_connect(void)) and passed as
API argument (int tls_send(state, buffer, length)) to make an
SSL compartment nearly stateless. This shows a key pattern
enabled by opaque objects: safely making callers hold state
that corresponds to their interaction with a callee. Callers be-
come responsible for holding their entire state at the scale of
the system, simplifying fault recovery in the callee by avoid-
ing state spill [14, 15]. CHERIoT’s architectural support for
sealing (§2.1) makes implementing opaque objects simple.
However, the encoding of CHERIo0T capabilities allows for
only seven distinct types of opaque objects. This is a problem
as two compartments sharing a sealing key would be able to
unseal each other’s opaque objects.

We design a token API compartment that virtualizes seal-
ing on top of a hardware sealing type to which it has exclu-
sive access. The unsealing API voidx token_unseal(key, sobj) it
implements is similar to hardware unsealing: to unseal a
sobj of a given wvirtual sealing type, an authorizing key for
that virtual sealing type must be provided. The key must be
a tagged capability with the permit-unseal permission, and its
cursor must be the virtual sealing type. The sobj handle must
be sealed with the token API’s hardware-backed sealing type
and bear a header that stores its virtual sealing type followed
by the payload. The token API unseals sobj (from under its

CHERIoT RTOS: An OS for Fine-Grained Memory-Safe Compartments
on Low-Cost Embedded Devices

architectural seal) then checks that the type in the key and the
type in the header of sobj match. If so, it returns a capability
to the payload of the unsealed object, exclusive of the header.

Virtual sealing types can be created at run time with a
key token_key_new() APL. Sealed objects (sobj) can be dynami-
cally allocated with an allocator API that allocates memory
with a (protected) header holding a given key. Virtual sealing
types and sealed objects can also be created statically with
macros, to be instantiated by the loader at boot time (§3.1.1).
Allocation capabilities, discussed next, are an example of
static (i.e., statically-instantiated) opaque objects.

3.2.2 Allocation Capabilities and Quotas. It is essential
to control compartments memory usage to enforce availabil-
ity. To that end the allocator defines allocation capabilities
that specify quotas. Allocation capabilities are static opaque
objects logically decoupled from compartments: a compart-
ment may hold none or several allocation capabilities with
distinct quotas. CHERIoT’s core memory allocation APIs
heap_allocate and heap_free take allocation capabilities, such
that only compartments with access to an allocation capabil-
ity may allocate memory, and the memory they can allocate
is limited by the quota defined therein. For compatibility
we provide malloc and free which use, if extant, the compart-
ment’s default allocation capability. Since quotas are defined
statically, policies on each compartment’s quota(s) can be
enforced globally via firmware auditing (§4).

Allocation capabilities also contribute to safer delegation.
It is often necessary to share a heap object with another
compartment without allowing it to free the object. This
is not possible if the object itself is the token of authority
that permits freeing. heap_free addresses this by requiring an
allocation capability matching the one used to allocate the
object. As we discuss next, compartments may decide on
a case-by-case basis to share their allocation capability to
grant another compartment the right to free their objects.

3.2.3 Quota Delegation. Some compartments need to
allocate memory but should not own that memory. Con-
sider a compartment that offers services to several mutually-
distrusting callees. If the compartment allocates memory
with its own quota to satisfy API calls, a bad callee might
repeatedly call its APIs to exhaust its quota and thus violate
availability. For example, a realistic t1s_connect API must al-
locate memory and may be called by any compartment on
the system. To address this, such APIs can take an allocation
capability as an argument to allocate on behalf of the caller.

Quota delegation must be done carefully from a security
point of view. First, allocating memory with the caller’s ca-
pability allows the caller to free the memory at any time to
trigger CHERI faults in the callee. For API endpoints that do
not alter the global state of the compartment, this is fine: due
to memory safety and thread isolation, callers may only DoS
themselves. In other cases, a fault in the callee may affect
other callers, which is problematic. The sealed allocation API

73

SOSP °25, October 13-16, 2025, Seoul, Republic of Korea

(§3.2.1) neatly solves this problem by requiring both a match-
ing allocation capability and virtual sealing type to deallocate.
Since callers do not have access to the sealing type, they can-
not free the memory out from under the callee if they used
this API. Additionally, our interface hardening API features
primitives to temporarily prevent freeing of a pointer (§3.2.5).

Second, a malicious callee might exhaust the quota, or ap-
propriate the allocation capability. The former can be avoided
by using a dedicated allocation capability for API calls, which
we enable by decoupling quotas from compartments. We ad-
dress the latter through strict enforcement of the principle of
intentional use [69]: callers can use CHERIoT s enforcement
of deep no-capture (§2.1) to prevent callees from storing their
allocation capabilities. This also has the advantage of avoid-
ing confused deputy problems [38]: by not keeping callees’ al-
location capabilities, a callee cannot be tricked into allocating
in another compartment’s quota it may also have access to.

3.2.4 Synchronization and Communication. We build
a rich set of thread synchronization and communication ab-
stractions from a small set of key OS primitives. At the core,
the scheduler provides a least-privilege futex [27] abstraction.
It has two APIs: compare-and-wait, which atomically sleeps if
the futex word matches a given value, and wake, which wakes
one or more sleepers, who are responsible for comparing the
futex word again. Both require only a capability to the futex
word with load permission, not retained by the scheduler.

We build locks as a shared library on top of futexes by
storing the lock state in the futex word. This fits the sched-
uler trust model: the scheduler can spuriously wake a thread
or can avoid waking one (breaking availability) but cannot
modify the lock word to cause two threads to believe that
they have acquired the same lock (breaking integrity). Typ-
ically, the lock’s futex word is a private compartment global.
A compartment may be called from multiple threads and
safely use the futex-based lock for mutual exclusion.

We build message queues atop futexes. Message queues are
an interesting case as they cater to two different trust models:
communication between threads that trust each other (e.g., in
a compartment), and between threads that distrust each other.
To satisfy both, we build message queues as a shared library
usable as-is in the trusted case. For mutual distrust, we en-
capsulate the library in a compartment that exposes queues
as opaque objects and adds additional interface hardening.

A mechanism to wait on multiple futexes is needed to build
more complex synchronization APIs. We provide the sched-
uler multiwaiter API, which allows a calling thread to block
for a set of futex events. All asynchronous APIs on CHERIoT
expose a futex that can be passed to the multiwaiter: e.g.,
sockets (enabling po11 use-cases) and message queues. Unlike
Kqueues [54], we prioritize memory usage over scalability as
we expect a low number of events on our embedded deploy-
ments, and the multiwaiter is trusted only for availability.

SOSP 25, October 13-16, 2025, Seoul, Republic of Korea

3.2.5 Interface Hardening. The attack surface of com-
partments consists of their API endpoints and the data they
share through compartment call arguments and statically
shared globals. The attack surface of isolated threads is
shared data. Interfaces require careful hardening as they
are the weak spot of compartmentalization [52, 53, 68]. We
design the CHERIOT platform to provide mechanisms and
APIs against most classes of interface vulnerabilities [52].

Thwarting information leaks. In CHERI systems, infor-
mation leaks affect not only confidentiality but also integrity
as leaked capabilities can grant write rights. Leaks can stem
from uninitialized memory (e.g., compiler-added paddings)
that leak data from previous allocations, or from over-sharing,
i.e., shared data or capability permissions that the other party
does not need [52]. Our allocator addresses the former by sys-
tematically erasing memory before assignment to a compart-
ment. Thus, uninitialized data can leak only in compartments
that do custom memory management or share non-zeroed
stack buffers, which we advise against. We address the latter
with capability de-privileging APIs. Before sharing a capabil-
ity (e.g., in a compartment call), compartments should use our
APIs to tighten capability bounds and permissions. For exam-
ple, before passing a send buffer to a socket API, the sender
should set the capability read-only and tighten its bounds
around the payload. When possible, capabilities should also
be made deeply immutable and non-capturable (§2.1) with
the same API to prevent other parties from modifying or
capturing capabilities reachable from the shared capability.
These APIs are reinforced by our auditing support (§4) which
helps detect statically-visible cases of over-sharing.
Checking inputs. Inputs that cross trust domains must be
carefully checked at two levels. First, pointer arguments must
be valid capabilities, of the right length, and with the right
permissions. Though error handlers (§3.2.6) can recover from
faults caused by invalid inputs, preventing faults in the first
place is often simpler. We enable such checks with APIs that
can check if a pointer is a capability with valid permissions
and length, whether or not a capability is sealed, and if a
heap buffer can be freed. Second, data itself must be checked.
As in prior work [68], CHERIOT makes compartments re-
sponsible for correctly vetting data flows as these checks are
application-specific. However, our opaque objects (§3.2.1)
considerably simplify the case of exported-and-reimported
data: objects returned opaquely need to be checked for suc-
cessful unsealing only when reimported, eliminating the
complex object-correctness checks otherwise needed.
Thwarting TOCTOU [3]. Checks must be resilient to TOC-
TOU attacks, a problem overlooked by prior compartmental-
ization works [52]. Copying data before checking is neces-
sary in the general case, thus we simplify specific cases. First,
our capability de-privileging APIs (§2.1) make it possible
to prevent a callee from (concurrently) modifying an object
they are passed or accessing it after returning. A distinct

74

Amar et al.

problem is temporal-memory-safety TOCTOU attacks, where
a bad compartment frees an object that another one is us-
ing to trigger a temporal memory-safety fault. We address
this with our allocator claim and ephemeral claim APIs. A
claim prevents the allocator from freeing the object until the
claim is released. It requires an allocation capability whose
quota can account for the object. Freeing the object with the
allocation capability used to claim releases the claim, and
the memory is released only once all claims are gone. An
ephemeral claim prevents an object from being freed until the
thread’s next compartment call or ephemeral claim. It does
not require an allocator capability and is much faster than a
full claim as it uses a switcher mechanism inspired by hazard
pointers [63] to avoid a compartment call to the allocator.

Checking entry points. Compartment and shared library
entry points are defined via compiler annotations. The com-
piler populates compartment import and export tables based
on (a) these annotations and (b) the calls each compartment
makes. Functions not exposed at compile time via an anno-
tation cannot be called by any other compartment at run
time. Further, if a compartment’s code does not call another
one’s entry points, then these entry points will not be in
its import table and thus not callable at runtime (providing
cross-compartment control-flow integrity [53]). When declar-
ing entry points, developers can also state how much stack
memory they require. This protects against an attacker call-
ing an API with a small stack to trigger stack overflow faults
in the callee. This matches good embedded systems practices
to be careful with stack usage [12], and we provide tooling
to dynamically determine stack usage with a watermark.

3.2.6 Error Handling. Compartments are fault-tolerance
boundaries: they can define error handlers, called by the
switcher (but executing in the context and with the rights of
the compartment), to handle traps such as CHERI faults or
illegal instruction faults. We expose two such abstractions:

Global error handlers are implemented by defining a spe-
cial function compartment_error_handler() in the compartment.
The function takes as argument the cause of the fault, and a
copy of the register file, which it may modify. Its return value
can instruct the switcher to resume (with the potentially
modified register file), or unwind in the caller compartment.
Though they share similarities with UNIX signal handlers,
global handlers handle only synchronous faults (not arbitrary
events), and do so only in their respective compartment.

Scoped error handlers are lexically-scoped. Developers
wrap code with macros buRING {...} HANDLER {...} similar to try-
except exception handling. We design scoped handlers using
C’s 1ongjmp and setjmp, revisiting historical exception-handling
mechanisms [19, 71]. Upon entering a scope, setjmp stores the
four non-temporary registers onto a linked-list on the stack,
whose head pointer is at the top of the stack. When the error
handler is called, 1ongjmp retrieves the head and jumps to the
handler by restoring the four registers. Scoped handlers are

CHERIoT RTOS: An OS for Fine-Grained Memory-Safe Compartments
on Low-Cost Embedded Devices

less expressive than global handlers (e.g., they do not indicate
the cause of the fault and do not allow resume), but feature a
near-zero memory overhead. longjmp and setjmp have become
uncommon for exception handling due to their runtime cost
on the non-error path [19]; however the specifics of CHERIoT
(our small register set and storing the list head at the top of
the stack) allow us to implement them in just six instructions.

Error-handling policies. Handlers can either (a) ignore the
fault and unwind the thread, (b) correct the fault, or (c) en-
tirely micro-reboot [16] the compartment. Without handler
the switcher defaults to (a), which is the right approach for
APIs that do not operate on global state. Correcting faults
typically consists of a rollback, releasing resources held by
the thread or resetting some state before unwinding. Cor-
recting faults is possible as illegal operations trap before
affecting data, unlike an MPU that faults only after writes
have overflowed up to the bounds of a memory region. Micro-
rebooting is needed in the most complex cases where APIs
operate on global state that is too complex to be corrected.

Our hybrid compartment model fundamentally simplifies
micro-reboots by reducing the amount of state that must
be reset. Faults naturally do not spread: compartments are
inherently decoupled with well-defined and hardened inter-
faces; our programming model encourages retryable inter-
faces with timeouts; and the opaque object paradigm (§3.2.1)
fundamentally reduces state spill [14, 15].

To our experience the most complex micro-reboots entail
five steps, which we support with dedicated APIs. (1) Prevent-
ing new threads from entering the compartment, typically by
wrapping entry points with a guard controlled by the error
handler. When using a scoped handler, guard and handler
can be co-located. (2) Rewinding all threads that are in the
compartment. Switcher APIs simplify this by waking up and
faulting all other threads in the compartment. (3) Releasing
all heap data using allocator APIs that free all memory associ-
ated with a quota. (4) Resetting all globals from safe read-only
values. This can be automated with compile-time snapshots
of compartment global data and APIs to restore them. Com-
ponents that must keep persistent state across micro-reboots
can do so through a separate state store [16] compartment.

4 Auditing CHERIoT RTOS Images

So far we presented techniques to prevent policy violations
at run time. However, it is also critical to ensure that the
firmware itself is compliant with the policy at the integration
level [39, 91]. For example, we might need to know precisely
which compartments can access a given critical object. Ensur-
ing policy compliance not only matters for regulatory pur-
poses, it can highlight programmer mistakes (that result in
policy violations, e.g., sharing a capability that should not be
shared) and help detecting supply-chain attacks (malicious
source changes that violate system-level policies). Compart-
mentalization works generally overlook such issues [53].

75

SOSP °25, October 13-16, 2025, Seoul, Republic of Korea

{ {
"compartments": {
"http_client": {

"compartment_name": "NetAPI",

/‘V "function": "network_socket_connect_tcp(...)",
"imports": [...] /
b . b
Firmware
} JSON report Import entry for the socket connect API

| count(data.compartment.compartments_calling("NetAPI")) = 1 |—>| true |

Rego policy: there must be only one caller to the network API.
Figure 4. Examples of JSON report and Rego policy.

Our compartment model has a simple guarantee that en-
ables auditing firmware images: at boot, only the import table
of a compartment may contain pointers that authorize access
to memory that is not owned by that compartment (§3.1.1).
This includes, for example, sealed capabilities pointing to
other compartments’ export tables and capabilities that per-
mit direct access to MMIO. It is thus easy to audit, for each
compartment, what APIs it calls in shared libraries and other
compartments, or what devices (or specific device memory-
mapped registers) it accesses. By consolidating this informa-
tion we can also obtain system-wide information, such as
whether or not the sum of the quotas of all allocation capabil-
ities (§3.2.2) in the system is less than the system’s total heap
memory, or assert that a certificate embedded in the firmware
image is accessible only to one specific compartment.

Our linker emits a JSON report containing all of these. Ex-
ternal auditing tools can then mechanically check the report
for compliance against a policy without access to all compart-
ment sources. This supports both simple and complex poli-
cies such as dual-signing policies where two entities provide
code for a device and have policies (e.g., regulatory require-
ments) that must be met for each to sign the firmware image.
We ship CHERIoT with an auditing tool that supports user-
provided policies in the Rego policy language [74]. By declar-
atively expressing desired properties, users can systemati-
cally assert local and system-wide properties before deploy-
ment. Fig. 4 illustrates the firmware report of an HTTP client,
along with a Rego policy checking that only one compart-
ment uses the network API. In practice such queries would
be part of a larger Rego script that checks a broader policy.

5 Evaluation

We implement our OS (Fig. 5), including the TCB, core APIs
(partly described in §3.2), C/C++ standard libraries, a com-
partmentalized network stack, and device drivers in ~13K LoC
of C++/C and 920 LoC of RISC-V assembly. We build for our
production-grade CHERIoT architecture based on the Ibex
RISC-V core [60], expecting commercial silicon in 2025.

5.1 Security Evaluation

5.1.1 TCB Size and Attack Surface. The core properties
of our OS, memory safety (P1) and isolation (P2) rely on the
safety of the TCB (§3). The loader consists of 1.9K LoC of C++
and takes no external input apart from the firmware. After

SOSP 25, October 13-16, 2025, Seoul, Republic of Korea

[Compartments i Shared Libraries

| Loader mia, | Switcher @}] | A[Iocatorml f

[Schedulexm] [Message Qu%}, [Thread Poo@)l H Input/Outpu@ii Debug Utllltl@
[Token APl | Firewall+DrEr3, [DNS Resoher)] | CHERT Helpere { Standard Libiaidh
| Network A@}l |[E TCP/IP ml |@ SNTP 435 f Pointer Check@, :[E Microvium L
|@ TLS @}l |@ MQTT @}l [P} Ported Component Contributed Source LoC

o

22§,

Locks { Queue (Library) }

S

Figure 5. Native and ported OS components (simplified).

boot, it erases itself, eliminating it from the run time TCB.
The switcher consists of 355 instructions of carefully-audited
assembly, with 11 thoroughly-checked entry points. It is the
most critical component of the run time TCB, however its
small size makes it a difficult attack target. The allocator is
the largest component of the TCB, with 3.1K LoC and 16 en-
try points. Still, as discussed throughout §3, we strictly apply
the principle of least privilege to the TCB, such that even
a compromised allocator cannot mount a complete exploit
to, e.g., leak and exfiltrate data. The scheduler consists of
1.6K LoC and 15 endpoints. It is in the TCB only for availabil-
ity. In addition to our efforts to reduce the size and number
of entry points, TCB components are currently the target of
verification building on our formal model of the ISA [21, 78].

5.1.2 Attack Scenarios. Our design is the result of an ad-
versarial evaluation by an experienced red team. Still, no de-
fense is perfect: we now discuss which attacks it can and can-
not prevent, and how we achieve the principles from §2.2.2.

Memory safety. If attackers trigger a memory-safety bug,
the hardware raises a trap. The switcher will then call the
compartment’s error handler (§3.2.6), or unwind the thread
out of the compartment if no handler is defined, which is
the correct behavior in most cases. Thus, assuming these
mechanisms are correctly used, memory-safety bugs cannot
impact confidentiality, integrity, or availability.

Repeat attacks. Error handlers maintain availability by
resetting a compartment into a functional state. However
this cannot prevent DoS with a strong attacker that can
repeatedly trigger traps to force a victim compartment to
spend all its cycles micro-rebooting. This is fundamental to
micro-reboots [16], not to CHERIoT. Gecko’s shadow com-
partments [58] could easily be implemented to address this.
Attacks on the error handler. A buggy error handler can
incorrectly reset compartment state. Such a bug would not
be exploitable by itself and require a chain of exploits to
trigger the error handler and then abuse the invalid state. The
reliance on correct error handling is fundamental to micro-
reboots [16] and error handling in general, not to CHERIoT.
Attacks that do not cause a trap. CHERIoT cannot prevent
the exploitation of bugs that do not cause a trap (e.g., high-
level program logic bugs). However, it can fully contain them
in a compartment to mitigate their impact. Note that, aside
from formal verification, we are not aware of any technique
that could prevent the exploitation of such bugs.

76

Amar et al.

Supply-chain attacks. Supply-chain attacks are contained
by compartments at run time. Further, offline auditing (§4)
can mechanically and pro-actively detect software supply-
chain attacks that affect compartment interactions, e.g., a
bad compartment illegitimately importing the exported glob-
als of other compartments. Consider a library that is not
supposed to use the network APL Auditing can check that
the compartment indeed does not declare a dependency on
the network API, as this would allow it to do illegitimate
network calls at run time. We expand in §5.1.3.

Interface attacks. Attackers that compromised a compart-
ment will try to leverage interface vulnerabilities to spread
to other compartments and mount a full attack [52]. While
we cannot entirely rule out such attacks, our interface hard-
ening APIs (§3.2.5) help developers build strong interfaces
to prevent them, and our fine grain of isolation and cross-
compartment control-flow integrity increases the number of
interfaces that must be breached to mount a full attack [83].
Our programming model could be extended with RLBox’s
tainted types [68] to reduce the risk of oversights.

Overall, our defenses are effective to achieve P1, P2, and P4
as long as integrator-controlled parts (error handlers, inter-
face hardening, auditing) are correctly implemented. This is
generally true for all compartmentalization techniques [53].

5.1.3 Case Study. We materialize these attack scenarios
through a case study. Consider the recent supply-chain attack
on liblzma [17]. A stealthy malicious actor gained upstream
rights on liblzma, a dependency of OpenSSH on Debian and
Fedora systems. A backdoored version of the library used
the GNU C library’s indirect function mechanism [29] to run
malicious code during dynamic linking, to override the RSA
API in OpenSSL. Would CHERIoT, and other approaches to
secure embedded systems, be vulnerable to this class of attack?

CHERIoT would make it very hard to mount such an attack.
Set aside the fact that our OS does not (yet) support dynamic
linking, by design no compartment can run code in the con-
text of the loader. Our SSL library is compartmentalized, and
liblzma would typically be compartmentalized too. Thus, at
runtime, there is no way for liblzma to access the memory of
the SSL library. It could try to corrupt the SSL library through
interface attacks, yet any outputs from the liblzma library
would be checked by its callers through our interface hard-
ening APIs (§3.2.5), and again by the SSL compartment itself.
The backdoored liblzma release could also introduce code
that made network calls, e.g., to break real-time properties or
turn the device into a botnet. However auditing (§4) makes
it impossible to hide such a backdoor: these new properties
would immediately show up in the JSON firmware report,
and a global auditing policy with queries such as the one
presented in Fig. 4 would detect these changes. Writing an
auditing policy for the liblzma compartment would be easy
since the library has very few runtime dependencies and thus
relies on a stable and well-defined set of compartment APIs.

CHERIoT RTOS: An OS for Fine-Grained Memory-Safe Compartments
on Low-Cost Embedded Devices

Language-based isolation alone cannot prevent this attack.
Consider Rust, which powers Tock’s capsules [55]. Rust does
not support the indirect function mechanism used in the
liblzma attack, but there are many other ways in which a
bad dependency could affect the SSL library even without
using the unsafe keyword. For example on a Unix-like system
it could overwrite memory through /proc [4, 40]. More subtly,
a bad library could exploit soundness bugs in the Rust com-
piler [59], which does not claim security guarantees in the
case of actively malicious (as opposed to simply buggy) code.

Automated compartmentalization, which represents most
recent works in embedded compartmentalization [18, 45, 46,
49, 109], is fundamentally vulnerable to this attack. These
works aim to automatically split memory and insert domain
switches, provided a code base and desired compartment
boundaries. If liblzma’s new release installs an indirect func-
tion resolver or accesses OpenSSL’s memory, the automated
compartmentalization tool will grant it the right to do so.
This is because these works do not include supply-chain
attacks in their threat model: source code is taken as policy
as components are assumed to be well-intended.

5.2 Source-Compatibility Evaluation

We analyze the existing codebases we ported () in Fig. 5) and
the effort involved to evaluate the source compatibility of our
platform (P5). These cover low-level, security-critical, and
higher-level embedded components, representing examples
of relevant code. We discuss four of them (two more in Fig. 5).

The FreeRTOS TCP/IP stack [5] (TCP/IP in Fig. 5) is a ma-
ture embedded TCP/IP stack of ~25K LoC. The code-base runs
unmodified on the CHERIoT core. However, it assumes that it
can enable and disable interrupts at will, which our program-
ming model forbids (§2.1). Interrupts are disabled only for
synchronization in the TCP/IP stack, so we replace them with
a mutex by changing an external header. We also want the
TCP/IP stack to be isolated with all the benefits of CHERIoT,
so we add a wrapper encapsulating it to use opaque objects
for connection state, allocated with quota delegation, to use
our interface hardening APIs, and to be micro-rebootable.
This takes 1.7K LoC with no changes to upstream code; we
pulled code updates for more than a year without conflicts.
We consider this an upper bound of the cost of developing a
wrapper given the complexity and statefulness of the TCP/IP
stack, and costs could be traded off with security properties.
BearSSL [79] (TLS in Fig. 5) is an embedded TLS library of
~30K LoC (including all ciphers). BearSSL runs unmodified
on our platform. As with the network stack, BearSSL is not
designed to be called by mutually-distrusting callers, so we
build a wrapper in 624 LoC to make it run in a fault-tolerant
CHERIoT compartment with flow isolation.

The TPM reference stack [64] is a security-critical C code-
base of 60K LoC. It exposes a single entry point that processes
a TPM command. The TPM stack requires only a <10 LoC

77

SOSP °25, October 13-16, 2025, Seoul, Republic of Korea

patch to add RISC-V support. A single annotation is needed
to run it isolated from the I/O compartment, as the TPM
stack is already designed assuming distrust with callers.
Microvium [42] is an embedded JavaScript interpreter of
~6K LoC. It runs unmodified on CHERIoT. We provide Mi-
crovium as a shared library, requiring changes that would
not be needed for a private copy in a compartment (total
114 LoC): we set macros defining memory (de-)allocation
functions to use the default allocation capability, and an
export macro to our library export attribute.

From this experience, we believe that we achieve a level
of source compatibility comparable to moving to any new
embedded platform, while providing significantly more secu-
rity. Integrators can choose to develop more or less complex
wrappers to benefit from CHERIoT s security full potential.

5.3 Memory Usage and Performance Evaluation

Setup and baseline. We run all experiments on an Arty
A7-100T FPGA board, set up at 33 MHz and with 256 KiB of
SRAM. We compile all code with -0z to favor code size over
performance. To the best of our knowledge, there are no
comparable baseline systems: existing embedded platforms
do not support fine-grained isolation and memory safety on
such small systems and other embedded OSes do not run
on the CHERIoT hardware without significant porting ef-
fort. Thus, we evaluate through an ablation study (§5.3.1),
microbenchmarks (§5.3.1, §5.3.2), and a case study (§5.3.3).

Hardware performance. How does the CHERIoT core influ-
ence the performance of the overall system? Our main hard-
ware implementation (§5), is aggressively optimized for core
area at the expense of performance. CHERIoT adds about
4.5% more area than a 16-entry PMP [50] (the RISC-V equiv-
alent of an MPU [11]), which represents a negligible cost
on most SoCs used for IoT deployments. The performance
overhead is 20.65% on CoreMark [93] (bare metal), versus
non-CHERI RISC-V 32E. Some of the overhead is due to the
load filter (~8%) and to the size of the memory bus (~8%)
which is widened from 32 bits to only 33 for the tag bit to
limit area cost, but now requires two bus reads to load a
64-bit capability. This implementation matches low-cost de-
vices: in comparison, the Raspberry Pi Pico has a 192-bit
memory bus [80]. Some of the overhead is also due to the
temporal memory safety check and to an immature compiler.
We evaluate the hardware in detail in [9]. We now focus on
the overheads specific to our OS and compartment model.

5.3.1 Memory Usage. Low-end chips (<$1) typically have
as little as 128 KB of NVRAM for program code, and 32 KB
of SRAM. More expensive chips used for networked appli-
cations often have up to 1 MB of flash and 512 KB of SRAM.
We demonstrate that we can cater to both (P3).

Code size. Code must fit in NVRAM (often flash memory)
and SRAM where it is loaded at boot time. On low-end de-
vices code may be eXecuted In Place (XIP) in flash. Our base

SOSP 25, October 13-16, 2025, Seoul, Republic of Korea

Table 2. Code and data size of CHERIoT RTOS components.

[Component [Code Size [% of which for wrapper [Data Size]
Base System 25.9 KB - 3.7 KB

=, | Loader 7.5 KB 0 %° 66 B

§ Switcher 1.4 KB 0% 0B

< [Allocator 9KB 0 % 56 B

S [Scheduler 33KB 0% 472 B

Base + Network Stack | 151.8 KB | - 20.4 KB
Firewall + Driver | 6.6 KB 0 %% 176 B

Hb:Q TCP/IP 38 KB 23 % 1.1 KB

3 DNS Resolver 3.6 KB 0% 400 B

S [SNTP 12KB 72% 56 KB

= [TLS 56 KB 8% 24 KB
MQTT 11 KB 28 % 24B

T'Not detailing shared libraries, stacks, and compartment/library metadata.
2 No wrapper since these are native components (see Fig. 5).

system fits in 25.9 KB (Tab. 2), and 18.4 KB without the loader
which is erased at boot time. This increases to 84.8 KB with
a network stack (151.8 KB with TLS and MQTT), similar to
Tock [55], which requires 87 KB with a simpler network stack.
Compatibility and hardening wrappers represent a variable
portion of ported components (8%-47%, Tab. 2). BearSSL’s
wrapper is comparatively small as its APIs simplify fault
tolerance and directly map to those we expose. Conversely,
our SNTP and MQTT wrappers expose higher-level com-
partment APIs, encapsulating part of what would usually
be application code. As discussed in §5.2, the size of wrap-
pers can be traded off. Code size will further reduce as our
CHERIoT compiler improves to match upstream RISC-V.
Data and heap usage. The overall SRAM usage consists of
(a) code if not using XIP, (b) data and BSS (including stacks
and per-thread data), and (c) heap usage. The base system
requires 3.7 KB of data (Tab. 2), and no heap. The data size is
dominated by the 1.5 KB of stacks and 400 B of trusted stacks,
required for the minimal two-thread system (scheduler and
application), and 1 KB of compartment and library metadata,
such as the import and export tables. This brings the overall
base usage to 29.6 KB without XIP, small enough to fit low-
end deployments. The network stack setting requires 20.3 KB
of data, mainly stacks (12.3 KB), trusted stacks (1.15 KB), and
compartment and library metadata (2.1 KB). Heap require-
ments depend on the workload, e.g., a heap of size 1.5 KB
is needed to run a functional network stack that can reply
to pings. This brings the base cost of the full networked set-
ting to 173.6 KB, fitting devices typically used for networked
applications. We provide an end-to-end example in §5.3.3.
Per-compartment usage. The base overhead for each ad-
ditional compartment (i.e., moving a function into a new
compartment) is 83 B, though post-link firmware footprints
can increase or reduce due to alignment paddings. This com-
pares favorably to Tock processes, which require 164 B [55].

5.3.2 Performance Microbenchmarks. We now evalu-
ate the performance of our isolation primitives and core APIs,
and discuss how they satisfy our target deployment (P3).

Cross-compartment call overheads are due to: (a) an indi-
rect call through the switcher, which (b) performs checks and

78

Amar et al.

m — - '

% 1500 &rorpars present 1037.9 £ 58 ﬁw"?%%'s’e ! ®

@ 1000 |_but not visible . s 15 ® ; ® ©

> L © 10 ' e

g 500 209 % 5 ' Allocation rate -e=
) 6 14 X |

L] 22\ 4168 91972034689 2097

0
cioPipraymeierrupt
Fun &‘;mvg“ e Allocation size
a) Call and interrupt latencies. b) Sustained memory allocation rate.
P Yy

Figure 6. Performance microbenchmarks.

bookkeeping and (c) zeroes stacks. Fig. 6a shows that it takes,
on average, 209 cycles to perform an empty compartment call
(repeated twenty times with one call for warm-up). This cost
increases as caller and callee use more stack: used stack mem-
ory must be zeroed to avoid caller-leaks on the call path, and
callee-leaks upon return. For example a compartment call
that uses 256 B of stack costs 452 cycles, similar to the cost
of a traditional null system call. In the unlikely worst case
where 1KiB of stack must be zeroed for both caller and callee,
the round trip costs 1284 cycles, which still compares favor-
ably to Donky [87] (2136 cycles). Overall, our design favors
memory usage over performance: the cost of zeroing is funda-
mental to using a single stack with mutually-distrusting do-
mains, and a performance-oriented design should maintain
separate per-domain stacks. Additional hardware features
can also reduce the cost of stack clearing [32, 33, 43, 106].
Interrupt latency is a factor of (a) the time to transition
to the scheduler, signal the event, and schedule the thread
that handles it, and (b) the time spent (by other threads)
with interrupts disabled. The former is a property of the core
OS code and the latter of a given firmware image. Different
use cases have different latency requirements, so we provide
tools for auditing (§4), rather than a one-size-fits-all solution.
We measure (Fig. 6a) interrupt latency using the hardware
revoker: from a high-priority thread we 1) ask the revoker for
an interrupt, and 2) wait on its interrupt futex; meanwhile,
from a low-priority thread we 3) constantly record the cur-
rent timestamp into a t; variable, until 4) the high-priority
thread awakes from the revoker IRQ and records a t, times-
tamp. The interrupt latency (t. — t;) is 1028 cycles (31 us at
33 MHz), on average, which is within typical RTOS task-level
interrupt latencies (500-1500 cycles [31, 75]), and satisfies the
higher-range of real-time requirements [75]. Real-time appli-
cations could extend the CHERIOT architecture to domain-
switch in hardware and deliver interrupts directly into com-
partments [75, 77], similarly to TrustZone-M’s secure inter-
rupts [13] and auditable in the same way as interrupt futexes.
Memory allocator throughput. A shared heap is a key
part of our contribution, but it is only useful if it can keep up
with allocation rates. Fig. 6b shows allocator throughput as
a function of allocation size: we allocate and free identically-
sized buffers for a total allocation amount of 8x the heap size,
which is set to 228 KiB (out of the 256 KiB of memory).

CHERIoT RTOS: An OS for Fine-Grained Memory-Safe Compartments
on Low-Cost Embedded Devices

Table 3. Average latencies of core APIs (in CPU cycles).

[CHERIoT RTOS API [Latency |
. Unseal an object | 44.8
Opa(}g; 2011*;_]ects Allocate a sealed object | 2432.2
- Allocate a new key | 688
De-privilege a pointer | <10

Interface Hardening Check a pointer | 44

(§3.2.5) Ephemeral claim | 182
Heap claim + unclaim | 3714

No Handler Non-error path | 0

Error (default) Fault and unwind | 109
Handling Global Non-error pgth 0

(§3.2.6) Handler Fault and unwind | 413

Scoped Non-error path | 87
Handler Fault and unwind | 222

We observe two main performance regimes. With buffers
below 32 KiB (®), throughput is dominated by compartment-
call latency (two per buffer, malloc and free), increasing expo-
nentially as the number of crossings halves. Most network
traffic uses buffers of over 1 KiB, which yields ~5 MiB/s, more
than enough to keep up with a 10 Mbit network connection.
Real-world IoT uses rarely need even a fraction of this rate,
leaving many cycles for the real work. After 32 KiB (®) the
revoker becomes a bottleneck, as fewer objects can be allo-
cated in the heap at any time. Past 80 KiB (©©) the heap can
fit only two objects, and a single one after 112 KiB (©@): these
pathological and unrealistic cases synchronize the revoker:
the revoker will kick in at free, which is immediately followed
by malloc, thus blocking the caller until the end of the sweep.
Core APIs. Tab. 3 shows the performance of our core APIs
(§3.2). Operations that typically happen at every call, such as
unsealing an object and checking inputs, are cheap. Costly
operations are one-offs that take place when setting up a com-
partment (e.g., new sealing key) or a new flow (e.g., allocating
a sealed object). Error handling is in the order of magnitude of
a compartment call, sufficient to swiftly recover from faults.

5.3.3 Case Study. We demonstrate that our OS can run
realistic workloads, composed largely of existing code, with
the hardware budget of a cheap IoT deployment. We imple-
ment a JavaScript application that connects to a private IoT
cloud back-end via MQTT over TLS and subscribes to notifi-
cations. When it receives a notification, it flashes the board’s
LEDs. This represents a generic class of IoT workloads that
perform local actions and communicate with a back-end net-
work service. Most of the code in this application is from
third-party components (MQTT, TLS, TCP/IP, Microvium, cf.
Fig. 5). Typical IoT cores run at 25-100 MHz: to match this,
the FPGA board is clocked at 33 MHz and features only a
simple network adaptor with no offload features.

This deployment has 13 compartments and requires 243 KB
of memory (182 KB for code, 28 KB for data, 33 KB for the
heap), fitting the profile of a cheap IoT device. We demon-
strate full-system performance by reporting the CPU load for
a run of the system (Fig. 7). We gather CPU load with an idle
thread that wakes up every second to get a timestamp, query

79

SOSP °25, October 13-16, 2025, Seoul, Republic of Korea

Execution phase (phase length)

Setup NTP Sync. App. Setup Steady App. Setup ~ Steady
— (5s) (10s) (12s) (7s) (12s) (5s)
X L ey e
< 1%8 Micro-
g 60 28b207m)
.27s
S 20N
o 20 A
o 0 5 10 15 20 25 30 35 40 45 50 55
Time (s)

Figure 7. Full-system CPU load for an IoT deployment on
CHERIoT RTOS, including a micro-reboot at ¢ = 34s.

the scheduler for the time spent idle, and calculate the CPU
load since the last timestamp. We also collect a timestamp at
the beginning of each execution phase. This instrumentation
takes ~10 KB of code, data, and heap, included in the above.
The initial phase (Setup in Fig. 7) allocates memory and
prepares the network stack (e.g., DHCP, ARP). This is mainly
spent waiting on the network (average load of 35%). We
then synchronize the clock with a remote NTP server. These
10s are entirely spent idle waiting on the network. The next
phase (App. Setup) performs a DNS lookup of the MQTT back-
end, establishes the TCP/TLS connection, and subscribes
to an MQTT event. Without crypto-acceleration hardware,
clock frequency is the bottleneck with an average load of 92%.
The next phase shows the steady state: for the next 7s
we wait for notifications. At t = 34s, we trigger a crash by
introducing a “Ping of death” bug. This demonstrates a micro-
reboot of the TCP/IP stack which completes in 0.27s, at which
point the application re-establishes a connection with the
server. 12s later the application is back to waiting for a no-
tification. We send one 5s later, after which we stop tracing.
Over the whole 52s that we measure, the CPU usage is
46.5% on average, mainly waiting on the network. We be-
lieve that this demonstrates that our platform’s end-to-end
security guarantees fit well within acceptable performance
requirements, even with a cheap microcontroller.

6 Related Works
This section is designed to be read along with Tab. 4.

Language-Based OSes. Many prior memory-safe OSes lever-
age safe languages. Among others, Singularity [41] uses
memory safety for isolation, and Tock [55] builds on the Rust
type system (both in Tab. 4). Safe languages are beneficial
and compose harmoniously with CHERIoT, which supports
embedded JavaScript and Python, with Rust support ongoing.
Still, OSes that purely rely on language-based isolation re-
quire rewriting software, whereas we can securely run large
existing C/C++ components (P5). Further, pure language-
based approaches do not realize our defense-in-depth vision
as they have a large TCB and do not address supply-chain
problems. For example, there are known soundness bugs
in rustc that can be exploited by malicious code to violate
Rust’s safety model [59]. Sharma et al. [90] expand on the
limitations of Rust for embedded systems.

SOSP 25, October 13-16, 2025, Seoul, Republic of Korea Amar et al.
Table 4. Comparison of key design aspects of the CHERIoT RTOS with the closest prior works.

MMU- Spatial Heap Temporal | Call-Stack Temporal Fine-Grain Fault-Tolerant | De-Privileged Interface- Auditing

less Memory Safety | Memory Safety | Memory Safety | Compartments | Compartments TCB Hardening APIs | Support
Singularity [41] Partial (S) | Yes Yes Yes No No No No No
Tock [55] Yes Partial (K) Partial (K) Partial (K) No (T) No No No No
TZ-DATASHIELD [49] Yes No No No Yes No No No No
CheriBSD [1] No Yes (M) Partial (A) (M) | No Partial (A) No No No No
CheriOS [23] No Yes (M) Yes (M) Yes (M) Yes Yes Yes No No
CheriRTOS [104] Yes Yes No No No No No No No
CompartOS [8] Yes Yes No No Yes Yes No No No
CHERIOT (this work) | Yes Yes Yes Yes Yes Yes Yes Yes Yes

(S) Singularity is not designed for MMU-less systems, but its design can be applied to MMU-less systems;

(K) Kernel-only; (A) Application-only. (M) MMU-based;

(T) Tock also has fine-grain "capsules”, but these enforce weaker isolation and are kernel-only [7].

Embedded Compartmentalization. Most prior works to
secure embedded systems use existing hardware such as the
MPU or TrustZone [18, 36, 45, 46, 49, 55, 77, 109] (see [49]
in Tab. 4). This constrains these works to coarse-grained
isolation [92], limiting their security and usability benefits.
Most also aim to automatically retrofit isolation into existing
embedded software [18, 45, 46, 49, 109]. This makes it hard
to effectively harden system and compartment interfaces,
vital to obtain tangible security benefits [52, 53]. Their focus
on memory isolation also prevents them from attaining fault
tolerance, memory safety, or protection against supply-chain
attacks, all important in the embedded space.
CHERI-Based OSes. We are not the first to build an OS
leveraging CHERI capabilities. The system with the closest
security properties is CheriOS [23] (in Tab. 4). CheriOS, like
CHERIoT, enables fine-grain, fault-tolerant compartments.
It also features a de-privileged TCB whose nanokernel resem-
bles our switcher. However the design of CheriOS targets
large, 64-bit multi-core deployments and heavily uses vir-
tual memory, making it inapplicable to embedded settings
(P3). In the embedded space, CheriRTOS [104] introduces
the first CHERI 32-bit capability format, and CompartOS [8]
proposes to use linkage units as compartments and support
fault tolerance (both in Tab. 4). The limitations of these sys-
tems motivate our hardware-software co-design: they do not
consider temporal memory safety (P1), offer no or limited
support for compartment interface hardening (P2), do not
benefit from the API design principles we explore in §3.2,
and do not support firmware auditing (P5).

Capability OSes and Object Capabilities. CHERIoT builds
on a long history of capability OSes [28, 37, 44, 89, 100, 102]
and programming languages [20, 62, 65-67]. Early capabil-
ity OSes such as the Cambridge CAP [100], Hydra [102],
KeyKOS [37], EROS [89], and later L4 pkernels [22, 48] pi-
oneered the use of capabilities to facilitate isolation and
sharing, but capabilities remained limited in what they could
represent, where they could be stored, or how they could
be used. Capabilities later transitioned into programming
languages with object capabilities [62, 65, 66]. CHERI gen-
eralized this into an architectural capability mechanism that
can be used not only for access control but also for mem-
ory safety and fine-grain compartmentalization [99, 101].

80

CHERIOT extends this line of work to achieve memory-safe,
finely-compartmentalized embedded systems. The influence
of foundational works is still visible. Our mechanisms for safe
delegation (§2.1) remind Hydra’s EnvRts [57], which prevents
a callee from keeping a capability after returning, or EROS’
weak capabilities [89], which enforce transitive read-only
access. Our opaque objects (§3.2.1) can be viewed as software-
defined, hardware-accelerated object capabilities [65]. We
establish them as a key API paradigm to facilitate fault recov-
ery, making our opaque objects an optimization of historical
object capabilities towards dependable embedded systems,
where they have a single type and uniform access policies.

7 Concluding Remarks

We showed that, by rethinking hardware and software, it
is possible to construct a highly-secure embedded OS that
scales down to cheap devices. Unlike most prior work using
existing hardware and memory-safe languages, we achieve
both a fine grain of privilege separation and use existing
C/C++ codebases with few changes. Though our work has
focused on embedded systems, many of the ideas in our
design are applicable to larger systems.

Acknowledgements

We would like to thank the anonymous reviewers, and our
shepherd, Robbert van Renesse, for their comments and in-
sights. Distribution Statement A: Approved for public release.
Distribution is unlimited. This work supported in part by the
Defense Advanced Research Projects Agency (DARPA) and
the Air Force Research Laboratory (AFRL) under contracts
FA8750-10-C-0237 (“CTSRD”), HR0011-22-C-0110 (“ETC”),
and FA8750-24-C-B047 (“DEC”). The views, opinions, and/or
findings contained in this report are those of the authors and
should not be interpreted as representing the official views
or policies, either expressed or implied, of the Department of
Defense or the U.S. Government. This work was supported
in part by Innovate UK project Digital Security by Design
(DSbD) Technology Platform Prototype (105694), the EPSRC
CHaOS Grant (EP/V000292/1), and UKRI3001: CHERI Re-
search Centre. This work was supported in part by Google.
We acknowledge the support of the Natural Sciences and
Engineering Research Council of Canada (NSERC).

CHERIoT RTOS: An OS for Fine-Grained Memory-Safe Compartments

on Low-Cost Embedded Devices SOSP °25, October 13-16, 2025, Seoul, Republic of Korea
References [18] Abraham A. Clements, Naif Saleh Almakhdhub, Saurabh Bagchi, and
[1] [n.d.]. CheriBSD. https://www.cheribsd.org/. Accessed 2025-08-11. Mathias Payer. 2018. ACES: Automatic Compartments for Embedded

Systems. In Proceedings of the 27th USENIX Security Symposium

[2] [n.d.]. CHERIoT open-source repositories. https://github.com/
(USENIX Security’18). USENIX Association, Baltimore, MD, 65-82.

CHERIoT-Platform/. Accessed 2025-07-22.

[3] [n.d.]. CWE-367: Time-of-check Time-of-use (TOCTOU) Race Condi- [19] Christophe de Dinechin. 2000. C++ Exception Handling for IA64.
tion. https://cwe.mitre.org/about/index.html. Accessed 2025-03-04. In Proceedings of the 1st USENIX Workshop on Industrial Experiences
[4] [n.d]. Document Rust’s stance on /proc/self/mem. with Systems Software (WIESS’00). USENIX Association, San Diego,
https://github.com/rust-lang/rust/pull/97837. Accessed 2025-08-11. CA. ‘hﬁpéz//www.usen|x.org/conference/W|ess— 2000/c-exception-
[5] [n.d.]. FreeRTOS: Real-time operating system for microcontrollers handlmg—[a6.4))
and small microprocessors. https://github.com/FreeRTOS/FreeRTOS. (20] Jack B. Dennis and Earl C. Van Horn. 1966. Programming Semantics
Accessed 2023-04-17. for Multiprogrammed Computations. Commun. ACM 9, 3 (mar 1966),
[6] [n.d.]. seL4 Verification: What the Proofs Assume. 143-155. dOHOJ]45/3§5230'365252) -))
https://www.sel4.systems/Verification/assumptions.html. Accessed [21] Anna Lena Duque Anton, Johannes Miiller, Philipp Schmitz, Tobias
2025-08-15. Jauch, Alex Wezel, Lucas Deutschmann, Mohammad Rahmani Fadi-
[7] [n.d.]. The Tock Book: Capsule Isolation. https://github.com/tock/ h'eh, Dominik Stoffel, anfi Wo'lfgang Kunz. 2025. VeriCHERI: EXh"'iUS‘
book/blob/master/src/doc/threat_model/capsule_isolation.md. tive Formal Security Verification of CHERI at the RTL. In Proceedings
Accessed 2025-08-11. of the 43rd IEEE/ACM International Conference on Computer-Aided
[8] Hesham Almatary, Michael Dodson, Jessica Clarke, Peter Rugg, Ivan Design (ICCAD’25). Association for -Computing Machinery, New
Gomes, Michal Podhradsky, Peter G. Neumann, Simon W. Moore, and York, NY, USA, Article 182. https://doi.org/10.1145/3676536.3676841
Robert N. M. Watson. 2022. CompartOS: CHERI Compartmentaliza- [22] Kevin Elphinstone and Gernot Heiser. 2013. From L3 to SeL4 What
tion for Embedded Systems. (2022). https:/arxiv.org/abs/2206.02852 Have We Learnt in 20 Years of L4 Microkernels?. In Proceedings of the
[9] Saar Amar, David Chisnall, Tony Chen, Nathaniel Wesley Filardo, 24th ACM Symposium on Operating Systems Principles (Farminton,
Ben Laurie, Kunyan Liu, Robert Norton, Simon W. Moore, Yucong Pennsylvania) (SOSP’13). Association for Computing Machinery,
Tao, Robert N. M. Watson, and Hongyan Xia. 2023. CHERIoT: New York, NY, USA, 133-150. doi:10.1145/2517349.2522720
Complete Memory Safety for Embedded Devices. In Proceedings of the [23] Lawrence G. Esswood. 2021. CheriOS: designing an untrusted single-
56th Annual IEEE/ACM International Symposium on Microarchitecture address-space capability operating system utilising capability hardware
(Toronto, ON, Canada) (MICRO’23). Association for Computing Ma- and a minimal hypervisor. Ph. D. Dissertation. doi:10.48456/tr-961
chinery, New York, NY, USA, 641-653. doi:10.1145/3613424.3614266 [24] Federal Bureau of Investigation. 2024. People’s Republic of China-
[10] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Linked Actors Compromise Routers and IoT Devices for Botnet Op-
Bursztein, Jaime Cochran, Zakir Durumeric, J. Alex Halderman erations. https://media.defense.gov/2024/Sep/18/2003547016/-1/-1/
Luca Invernizzi, Michalis Kallitsis, Deepak Kumar, Chaz Lever, Zane O/CSA_ERC_LI NKEDfACTORS'BOTN ET'PDF- Accessed 2025-03-04.
Ma, Joshua Mason, Damian Menscher, Chad Seaman, Nick Sullivan, [25] Nathaniel Wesley Filardo, Brett F. Gutstein, Jonathan Woodruff,
Kurt Thomas, and Yi Zhou. 2017. Understanding the Mirai Botnet. Sam Ainsworth, Luc%an Paul-Trifu, Bm":’ks Davis, Hongyan X_la’
In Proceedings of the 26th USENIX Security Symposium (USENIX Edward Tomasz Napierala, Alexander Richardson, John Baldwin,
Security’17). USENIX Association, Vancouver, BC, 1093-1110. David Chisnall, Jessica Clarke, Khilan Gudka, Alexandre Joannou,

A. Theodore Markettos, Alfredo Mazzinghi, Robert M. Norton,

https://www.usenix.org/conference/usenixsecurity17/technical-
Michael Roe, Peter Sewell, Stacey Son, Timothy M. Jones, Simon W.

sessions/presentation/antonakakis
[11] ARM Ltd. [n.d.]. Armv8-M Memory Model and Mem- Moore, Peter G. Neumann, and Robert N. M. Watson. 2020.
ory Protection User Guide: Memory Protection Unit. Cornucopia: Temporal Safety for CHERI Heaps. In Proceedings
https://developer.arm.com/documentation/107565/0101/Memory- of the 2020 IEEE Symposium on Security and Privacy (S&P’20).
protection/Memory-Protection-Unit. Accessed 2025-03-04. IEEE Computer Society, Los Alamitos, CA, USA, 1507-1524.

[12] ARM Ltd. 2019. Determining the Stack Usage of Applications (Keil dOHO‘T] 09/5P40000'V2020‘00098)
Application Note 316). https://developer.arm.com/documentation/ [26] Nathaniel Wesley Filardo, Brett F. Gutstein, Jonathan Woodruff,
kan316/1-3/?lang=en. Accessed 2025-03-04. Jessica Clarke, Peter Rugg, Brooks Davis, Mark Johnston, Robert
[13] ARM Ltd. 2025. TrustZone Hardware Architecture: Secure Norton, David Chisnall, Simon W. Moore, Peter G. Neumann, and

Robert N. M. Watson. 2024. Cornucopia Reloaded: Load Barriers
for CHERI Heap Temporal Safety. In Proceedings of the 29th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems (La Jolla, CA, USA) (ASPLOS’24,
Vol. 2). Association for Computing Machinery, New York, NY, USA,

interrupts. https://developer.arm.com/documentation/PRD29-
GENC-009492/c/TrustZone-Hardware-Architecture/Processor-
architecture/Secure-interrupts. Accessed 2025-03-04.

[14] Kevin Boos, Namitha Liyanage, Ramla [jaz, and Lin Zhong. 2020.
Theseus: an Experiment in Operating System Structure and State Man-
agement. In Proceedings of the 14th USENIX Symposium on Operating 251-268. doi:10.1145/3620665.3640416
Systems Design and Implementation (OSDI’20). USENIX Association. (27] Hubertus Franke, Rusty Russel, and Matthew Kirkwood.

[15] Kevin Boos, Emilio Del Vecchio, and Lin Zhong. 2017. A Character- 2002. Fuss, Futexes and Furwocks: Fast Userlevel Lock-
ization of State Spill in Modern Operating Systems. In Proceedings of ing in Linux. In Ottowa Linux Symposium 2002. https:
the 12th European Conference on Computer Systems (Belgrade, Serbia) //www.kernel.org/doc/ols/2002/0152002- pages-479-495.pdf
(EuroSys’17). Association for Computing Machinery, New York, NY, [28] Bill Frantz, Norm Hardy, Jay Jonekait, and Charlie Landau. 1979.
USA, 389-404. doi:10.1145/3064176.3064205 GNOSIS: A Prototype Operating System for the 1990’s. (1979). http:

//www.cap-lore.com/Agorics/Library/KeyKos/gnosisShare.html

Free Software Foundation, Inc. 2025. GCC 15.2 Manual. Chap-

ter 6.4.1.1 Common Function Attributes, ifunc ("resolver").

—

=

[16] George Candea, Shinichi Kawamoto, Yuichi Fujiki, Greg Friedman,
and Armando Fox. 2004. Microreboot — a technique for cheap
recovery. In Proceedings of the 6th USENIX Conference on Operating
Systems Design and Implementation (OSDI’04). USENIX Association. https://gcc.gnu.org/onlinedocs/gce-15.2.0/gec/ Common-Function-

Thomas Claburn. 2024. Malicious SSH backdoor sneaks into xz, Linux Attributes.html#index-ifunc-function-attribute Accessed 2025-08-11.
world’s data compression library. https://www.theregister.com/ [30] Franz A. Fuchs, Jonathan Woodruff, Peter Rugg, Alexandre Joannou,
2024/03/29/malicious_backdoor_xz/. Accessed 2025-08-11. Jessica Clarke, John Baldwin, Brooks Davis, Peter G. Neumann,

[29

—

[17

—

81

https://www.cheribsd.org/
https://github.com/CHERIoT-Platform/
https://github.com/CHERIoT-Platform/
https://cwe.mitre.org/about/index.html
https://github.com/rust-lang/rust/pull/97837
https://github.com/FreeRTOS/FreeRTOS
https://www.sel4.systems/Verification/assumptions.html
https://github.com/tock/book/blob/master/src/doc/threat_model/capsule_isolation.md
https://github.com/tock/book/blob/master/src/doc/threat_model/capsule_isolation.md
https://arxiv.org/abs/2206.02852
https://doi.org/10.1145/3613424.3614266
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://developer.arm.com/documentation/107565/0101/Memory-protection/Memory-Protection-Unit
https://developer.arm.com/documentation/107565/0101/Memory-protection/Memory-Protection-Unit
https://developer.arm.com/documentation/kan316/1-3/?lang=en
https://developer.arm.com/documentation/kan316/1-3/?lang=en
https://developer.arm.com/documentation/PRD29-GENC-009492/c/TrustZone-Hardware-Architecture/Processor-architecture/Secure-interrupts
https://developer.arm.com/documentation/PRD29-GENC-009492/c/TrustZone-Hardware-Architecture/Processor-architecture/Secure-interrupts
https://developer.arm.com/documentation/PRD29-GENC-009492/c/TrustZone-Hardware-Architecture/Processor-architecture/Secure-interrupts
https://doi.org/10.1145/3064176.3064205
https://www.theregister.com/2024/03/29/malicious_backdoor_xz/
https://www.theregister.com/2024/03/29/malicious_backdoor_xz/
https://www.usenix.org/conference/wiess-2000/c-exception-handling-ia64
https://www.usenix.org/conference/wiess-2000/c-exception-handling-ia64
https://doi.org/10.1145/365230.365252
https://doi.org/10.1145/3676536.3676841
https://doi.org/10.1145/2517349.2522720
https://doi.org/10.48456/tr-961
https://media.defense.gov/2024/Sep/18/2003547016/-1/-1/0/CSA-PRC-LINKED-ACTORS-BOTNET.PDF
https://media.defense.gov/2024/Sep/18/2003547016/-1/-1/0/CSA-PRC-LINKED-ACTORS-BOTNET.PDF
https://doi.org/10.1109/SP40000.2020.00098
https://doi.org/10.1145/3620665.3640416
https://www.kernel.org/doc/ols/2002/ols2002-pages-479-495.pdf
https://www.kernel.org/doc/ols/2002/ols2002-pages-479-495.pdf
http://www.cap-lore.com/Agorics/Library/KeyKos/gnosisShare.html
http://www.cap-lore.com/Agorics/Library/KeyKos/gnosisShare.html
https://gcc.gnu.org/onlinedocs/gcc-15.2.0/gcc/Common-Function-Attributes.html#index-ifunc-function-attribute
https://gcc.gnu.org/onlinedocs/gcc-15.2.0/gcc/Common-Function-Attributes.html#index-ifunc-function-attribute

SOSP 25, October 13-16, 2025, Seoul, Republic of Korea

Robert N. M. Watson, and Simon W. Moore. 2024. Safe Speculation
for CHERL. In Proceedings of the 42nd IEEE International Conference
on Computer Design (ICCD’24). IEEE Computer Society, Los Alamitos,
CA, USA, 364-372. doi:10.1109/ICCD63220.2024.00063

Phani Kishore Gadepalli, Runyu Pan, and Gabriel Parmer. 2020.
Slite: OS Support for Near Zero-Cost, Configurable Schedul-
ing. In Proceedings of the 26th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS’20). 160-173.
doi:10.1109/RTAS48715.2020.000-9

Aina Linn Georges, Armaél Guéneau, Thomas Van Strydonck, Amin
Timany, Alix Trieu, Sander Huyghebaert, Dominique Devriese,
and Lars Birkedal. 2021. Efficient and Provable Local Capability
Revocation Using Uninitialized Capabilities. Proc. ACM Program.
Lang. 5, POPL, Article 6 (jan 2021), 30 pages. doi:10.1145/3434287
Aina Linn Georges, Alix Trieu, and Lars Birkedal. 2022. Le Temps
Des Cerises: Efficient Temporal Stack Safety on Capability Machines
Using Directed Capabilities. Proc. ACM Program. Lang. 6, OOPSLA1,
Article 74 (apr 2022), 30 pages. doi:10.1145/3527318

Dan Goodin. 2025. Massive botnet that appeared overnight is
delivering record-size DDoSes. https://arstechnica.com/security/
2025/03/massive-botnet-that-appeared-overnight-is-delivering-
record-size-ddoses/. Accessed 2025-04-10.

Andy Greenberg. 2025. CyberAv3ngers: The Iranian
Saboteurs Hacking Water and Gas Systems Worldwide.
https://www.wired.com/story/cyberav3ngers-iran-hacking-
water-and-gas-industrial-systems/. Accessed 2025-04-17.

Taylor Hardin, Ryan Scott, Patrick Proctor, Josiah Hester, Jacob
Sorber, and David Kotz. 2018. Application Memory Isolation on
Ultra-Low-Power MCUs. In Proceedings of the 2018 USENIX Annual
Technical Conference (ATC’18). USENIX Association, Boston, MA, 127-
132. https://www.usenix.org/conference/atc18/presentation/hardin
Norman Hardy. 1985. KeyKOS architecture. SIGOPS Oper. Syst. Rev.
19, 4 (Oct. 1985), 8—25. doi:10.1145/858336.858337

Norm Hardy. 1988. The Confused Deputy: (Or Why Capabilities
Might Have Been Invented). SIGOPS Oper. Syst. Rev. 22, 4 (1988).
Wilhelm Hasselbring. 2000. Information System Integration.
Commun. ACM 43, 6 (June 2000), 32-38. doi:10.1145/336460.336472
Muhammad Hassnain and Caleb Stanford. 2024. Counterexamples
in Safe Rust. In Proceedings of the 39th IEEE/ACM International Con-
ference on Automated Software Engineering Workshops (Sacramento,
CA, USA) (ASEW’24). Association for Computing Machinery, New
York, NY, USA, 128-135. doi:10.1145/3691621.3694943

Galen Hunt, Jim Larus, Martin Abadi, Mark Aiken, Paul Barham,
Manuel Fahndrich, Chris Hawblitzel, Orion Hodson, Steven Levi,
Nick Murphy, Bjarne Steensgaard, David Tarditi, Ted Wobber, and
Brian Zill. 2005. An Overview of the Singularity Project. Technical
Report MSR-TR-2005-135. 44 pages. https://www.microsoft.com/en-
us/research/publication/an-overview-of-the-singularity-project/
Michael Hunter. [n.d.]. Microvium Javascript engine.
https://github.com/coder-mike/microvium. Accessed 2023-04-17.
Sander Huyghebaert, Thomas Van Strydonck, Steven Keuchel,
and Dominique Devriese. 2020. Uninitialized Capabilities. (2020).
arXiv:2006.01608 [cs.PL] https://arxiv.org/abs/2006.01608

Anita Katherine Jones. 1973. Protection in Programmed Systems.
Ph.D. Dissertation.

Arslan Khan, Dongyan Xu, and Dave Jing Tian. 2023. EC: Embedded
Systems Compartmentalization via Intra-Kernel Isolation. In
Proceedings of the 2023 IEEE Symposium on Security and Privacy
(S&P’23). 2990-3007. doi:10.1109/SP46215.2023.10179285

Chung Hwan Kim, Taegyu Kim, Hongjun Choi, Zhongshu Gu,
Xiangyu Zhang, and Dongyan Xu. 2018. Securing Real-Time Micro-
controller Systems through Customized Memory View Switching.
In Proceedings of the 25th Network and Distributed System Security
Symposium (NDSS’18). San Diego, CA. doi:10.14722/ndss.2018.23107

=

—

—

—

[t

Amar et al.

[47] Taegyu Kim, Chung Hwan Kim, Altay Ozen, Fan Fei, Zhan

Tu, Xiangyu Zhang, Xinyan Deng, Dave (Jing) Tian, and
Dongyan Xu. 2020. From Control Model to Program: In-
vestigating Robotic Aerial Vehicle Accidents with MAY-
DAY. In Proceedings of the 29th USENIX Security Symposium
(USENIX Security’20). USENIX Association, 913-930. https:
//www.usenix.org/conference/usenixsecurity20/presentation/kim
Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt,
Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch,
and Simon Winwood. 2009. SeL4: Formal Verification of an OS
Kernel. In Proceedings of the 22nd ACM Symposium on Operating
Systems Principles (Big Sky, Montana, USA) (SOSP’09). Associa-
tion for Computing Machinery, New York, NY, USA, 207-220.
doi:10.1145/1629575.1629596

Zelun Kong, Minkyung Park, Le Guan, Ning Zhang, and Chung Hwan
Kim. 2025. TZ-DATASHIELD: Automated Data Protection for
Embedded Systems via Data-Flow-Based Compartmentalization.
In Proceedings of the 32nd Network and Distributed System Security
Symposium (NDSS’25). San Diego, CA. doi:10.14722/ndss.2025.240563
Nick Kossifidis, Joe Xie, Bill Huffman, Allen Baum, Greg Favor,
Tariq Kurd, and Fumio Arakawa. 2021. PMP Enhancements
for Memory Access and Execution Prevention on Machine
Mode (Smepmp). https://raw.githubusercontent.com/riscv/riscv-
tee/main/Smepmp/Smepmp.pdf. Accessed 2025-03-04.

P. Ladisa, H. Plate, M. Martinez, and O. Barais. 2023. SoK: Tax-
onomy of Attacks on Open-Source Software Supply Chains. In
Proceedings of the 2023 IEEE Symposium on Security and Privacy
(S&P’23). IEEE Computer Society, Los Alamitos, CA, USA, 167-184.
doi:10.1109/SP46215.2023.00010

Hugo Lefeuvre, Vlad-Andrei Badoiu, Yi Chien, Felipe Huici, Nathan
Dautenhahn, and Pierre Olivier. 2023. Assessing the Impact
of Interface Vulnerabilities in Compartmentalized Software. In
Proceedings of the 30th Annual Network & Distributed System Security
Symposium (NDSS’23). doi:10.14722/ndss.2023.24117

Hugo Lefeuvre, Nathan Dautenhahn, David Chisnall, and Pierre
Olivier. 2025. SoK: Software Compartmentalization. In Pro-
ceedings of the 2025 IEEE Symposium on Security and Privacy
(S&P’°25). IEEE Computer Society, Los Alamitos, CA, USA.
doi:10.1109/SP61157.2025.00075

[54] Jonathan Lemon. 2001. Kqueue - A Generic and Scalable Event

Notification Facility. In Proceedings of the 2001 USENIX Annual
Technical Conference (ATC’01). 141-153.

Amit Levy, Bradford Campbell, Branden Ghena, Daniel B. Giffin, Pat
Pannuto, Prabal Dutta, and Philip Levis. 2017. Multiprogramming
a 64kB Computer Safely and Efficiently. In Proceedings of the 26th
Symposium on Operating Systems Principles (Shanghai, China)
(SOSP’17). Association for Computing Machinery, New York, NY,
USA, 234-251. doi:10.1145/3132747.3132786

Amit Levy, Bradford Campbell, Branden Ghena, Pat Pannuto, Prabal
Dutta, and Philip Levis. 2017. The Case for Writing a Kernel in Rust.
In Proceedings of the 8th Asia-Pacific Workshop on Systems (Mumbai,
India) (APSys’17). Association for Computing Machinery, New York,
NY, USA, Article 1, 7 pages. doi:10.1145/3124680.3124717

Henry M. Levy. 1984. Capability-based computer systems.
Digital Press, Burlington, Chapter 6. The Hydra System.
https://homes.cs.washington.edu/~levy/capabook/Chapter6.pdf
Ao Li, Jinwen Wang, and Ning Zhang. 2025. Software Availabil-
ity Protection in Cyber-Physical Systems. In Proceedings of the
34th USENIX Security Symposium (USENIX Security’25). https:
//www.usenix.org/conference/usenixsecurity25/presentation/li-ao
Zixi Liu, Yang Feng, Yunbo Ni, Shaohua Li, Xizhe Yin, Qingkai Shi,
Baowen Xu, and Zhendong Su. 2025. An Empirical Study of Bugs
in the rustc Compiler. Proc. ACM Program. Lang. 9, OOPSLA2 (2025).

https://doi.org/10.1109/ICCD63220.2024.00063
https://doi.org/10.1109/RTAS48715.2020.000-9
https://doi.org/10.1145/3434287
https://doi.org/10.1145/3527318
https://arstechnica.com/security/2025/03/massive-botnet-that-appeared-overnight-is-delivering-record-size-ddoses/
https://arstechnica.com/security/2025/03/massive-botnet-that-appeared-overnight-is-delivering-record-size-ddoses/
https://arstechnica.com/security/2025/03/massive-botnet-that-appeared-overnight-is-delivering-record-size-ddoses/
https://www.wired.com/story/cyberav3ngers-iran-hacking-water-and-gas-industrial-systems/
https://www.wired.com/story/cyberav3ngers-iran-hacking-water-and-gas-industrial-systems/
https://www.usenix.org/conference/atc18/presentation/hardin
https://doi.org/10.1145/858336.858337
https://doi.org/10.1145/336460.336472
https://doi.org/10.1145/3691621.3694943
https://www.microsoft.com/en-us/research/publication/an-overview-of-the-singularity-project/
https://www.microsoft.com/en-us/research/publication/an-overview-of-the-singularity-project/
https://github.com/coder-mike/microvium
https://arxiv.org/abs/2006.01608
https://arxiv.org/abs/2006.01608
https://doi.org/10.1109/SP46215.2023.10179285
https://doi.org/10.14722/ndss.2018.23107
https://www.usenix.org/conference/usenixsecurity20/presentation/kim
https://www.usenix.org/conference/usenixsecurity20/presentation/kim
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.14722/ndss.2025.240563
https://raw.githubusercontent.com/riscv/riscv-tee/main/Smepmp/Smepmp.pdf
https://raw.githubusercontent.com/riscv/riscv-tee/main/Smepmp/Smepmp.pdf
https://doi.org/10.1109/SP46215.2023.00010
https://doi.org/10.14722/ndss.2023.24117
https://doi.org/10.1109/SP61157.2025.00075
https://doi.org/10.1145/3132747.3132786
https://doi.org/10.1145/3124680.3124717
https://homes.cs.washington.edu/~levy/capabook/Chapter6.pdf
https://www.usenix.org/conference/usenixsecurity25/presentation/li-ao
https://www.usenix.org/conference/usenixsecurity25/presentation/li-ao

CHERIoT RTOS: An OS for Fine-Grained Memory-Safe Compartments
on Low-Cost Embedded Devices

[60]

[61]

[62]

(63]

(64

flan

(65]

[66]

[67]

[68]

[69]

[70]

(71]

(72]

(73]

(74]

[75]

[76]

(7]

https://2025.splashcon.org/details/fOOPSLA/204/An-Empirical-
Study-of-Bugs-in-the-rustc-Compiler

lowRISC CIC. 2025. The Ibex RISC-V Core.
//github.com/lowRISC/ibex. Accessed 2025-03-04.
Jessica Lyons. 2024. Iran-linked crew used custom ’cyberweapon’ in
US critical infrastructure attacks: IOCONTROL targets IoT and OT de-
vices from a ton of makers, apparently. https://www.theregister.com/
2024/12/13/iran_cyberweapon_us_attacks/. Accessed 2025-03-04.
Adrian Mettler, David A. Wagner, and Tyler Close. 2010. Joe-E:
A Security-Oriented Subset of Java. In Proceedings of the 17th
Annual Network & Distributed System Security Symposium (NDSS’10).
357-374.

M.M. Michael. 2004. Hazard Pointers: Safe Memory Reclamation
for Lock-Free Objects. IEEE Transactions on Parallel and Distributed
Systems 15, 6 (2004), 491-504. doi:10.1109/TPDS.2004.8

Microsoft. [n.d.]. TPM 2.0 Reference Implementation.
https://github.com/Microsoft/ms-tpm-20-ref/. Accessed 2023-04-17.
Mark Samuel Miller. 2006. Robust Composition: Towards a Unified Ap-
proach to Access Control and Concurrency Control. Ph. D. Dissertation.
http://jhir.library.jhu.edu/handle/1774.2/873

Mark S. Miller, Mike Samuel, Ben Laurie, Thab Awad, and Mike
Stay. 2008. Caja: Safe active content in sanitized JavaScript. Tech-
nical Report 2008-06-07. Google. https://google-code-archive-
downloads.storage.googleapis.com/v2/code.google.com/google-
caja/caja-spec-2008-06-06.pdf

James H. Morris. 1973. Protection in Programming Languages.
Commun. ACM 16, 1 (jan 1973), 15-21. doi:10.1145/361932.361937
Shravan Narayan, Craig Disselkoen, Tal Garfinkel, Nathan Froyd,
Eric Rahm, Sorin Lerner, Hovav Shacham, and Deian Stefan.
2020. Retrofitting Fine Grain Isolation in the Firefox Renderer.
In Proceedings of the 29th USENIX Security Symposium (USENIX
Security’20). USENIX Association, 699-716.

Peter G. Neumann. 2018. Fundamental Trustworthiness Principles
in CHERI. In New Solutions for Cybersecurity. The MIT Press.
doi:10.7551/mitpress/11636.003.0009

Lily Hay Newman. 2023. Panasonic Warns That Internet-of-Things
Malware Attack Cycles Are Accelerating. https://www.wired.com/
story/panasonic-iot-malware-honeypots/. Accessed 2025-03-04.
NeXT Computer, Inc. 1994. OpenStep Specification.
https://www.gnustep.org/resources/OpenStepSpec.pdf.gz. Accessed
2025-03-04.

Kyndylan Nienhuis, Alexandre Joannou, Thomas Bauereiss, Anthony
Fox, Michael Roe, Brian Campbell, Matthew Naylor, Robert M. Norton,
Simon W. Moore, Peter G. Neumann, Ian Stark, Robert N. M. Watson,
and Peter Sewell. 2020. Rigorous engineering for hardware security:
Formal modelling and proof in the CHERI design and implementation
process. In Proceedings of the 2020 IEEE Symposium on Security and
Privacy (S&P’°20). 1003-1020. doi:10.1109/SP40000.2020.00055
Nokia. 2024. Threat Intelligence Report 2024.
//www.nokia.com/asset/214202. Accessed 2025-03-04.

Open Policy Agent. 2025. The Rego Policy Language.
https://www.openpolicyagent.org/docs/v1.2.0/policy-language/.
Accessed 2025-03-04.

Runyu Pan and Gabriel Parmer. 2022. SBIs: Application Access
to Safe, Baremetal Interrupt Latencies. In Proceedings of the 28th
Real-Time and Embedded Technology and Applications Symposium
(RTAS’22). 82-94. doi:10.1109/RTAS54340.2022.00015

Cedric Pernet. 2024. Zscaler Report: Mobile, IoT, and OT Cyber
Threats Surge in 2024. https://www.techrepublic.com/article/zscaler-
2024-mobile-iot-ot-cyber-threat-report/. Accessed 2025-03-04.
Sanndro Pinto, Hugo Araujo, Daniel Oliveira, José Martins, and
Adriano Tavares. 2019. Virtualization on TrustZone-Enabled
Microcontrollers? Voila!. In Proceedings of the 25th IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS’19).

https:

https:

83

(78

(79

(81

(82

(83

(84

(85

(86

(87

(88

(89

[90

[91

[92

[

= =

—

= =

[l

=

=

—

]

—

=

—

—

SOSP °25, October 13-16, 2025, Seoul, Republic of Korea

293-304. doi:10.1109/RTAS.2019.00032

Louis-Emile Ploix, Alasdair Armstrong, Tom Melham, Ray Lin, Hao-
long Wang, and Anastasia Courtney. 2025. Comprehensive Formal
Verification of Observational Correctness for the CHERIoT-Ibex
Processor. arXiv:2502.04738 [cs.AR] https://arxiv.org/abs/2502.04738
Thomas Pornin. 2025. BearSSL: a smaller SSL/TLS library.
https://www.bearssl.org/. Accessed 2025-03-04.

Raspberry Pi Ltd. 2025. RP2350 Datasheet: A microcontroller by
Raspberry Pi. https://datasheets.raspberrypi.com/rp2350/rp2350-
datasheet.pdf. Accessed 2025-03-04.

Nilo Redini, Aravind Machiry, Ruoyu Wang, Chad Spensky,
Andrea Continella, Yan Shoshitaishvili, Christopher Kruegel, and
Giovanni Vigna. 2020. Karonte: Detecting Insecure Multi-binary
Interactions in Embedded Firmware. In Proceedings of the 2020
IEEE Symposium on Security and Privacy (S&P’20). 1544-1561.
doi:10.1109/SP40000.2020.00036

Leanna Rierson. 2013. Developing Safety-Critical Software — A Practi-
cal Guide for Aviation Software and DO-178C Compliance. CRC Press.
Nick Roessler, Lucas Atayde, Imani Palmer, Derrick McKee, Jai
Pandey, Vasileios P. Kemerlis, Mathias Payer, Adam Bates, Jonathan M.
Smith, Andre DeHon, and Nathan Dautenhahn. 2021. uSCOPE: A
Methodology for Analyzing Least-Privilege Compartmentalization
in Large Software Artifacts. In Proceedings of the 24th International
Symposium on Research in Attacks, Intrusions and Defenses (San
Sebastian, Spain) (RAID’21). Association for Computing Machinery,
New York, NY, USA, 296-311. doi:10.1145/3471621.3471839

Katie Rogers. 2024. Biden Hardens Protection Against Cybersecurity
Threats to Ports. https://www.nytimes.com/2024/02/21/us/politics/
cybersecurity-ports.html. Accessed 2025-04-10.

JH. Saltzer and M.D. Schroeder. 1975. The protection of infor-
mation in computer systems. Proc. IEEE 63, 9 (1975), 1278-1308.
do0i:10.1109/PROC.1975.9939

David E. Sanger, Madeleine Ngo, and Jack Ewing. 2024. Biden
Administration Proposes Ban on Chinese Software in Vehi-
cles. https://www.nytimes.com/2024/09/23/us/politics/chinese-
software-ban-cars-biden.html. Accessed 2025-04-10.

David Schrammel, Samuel Weiser, Stefan Steinegger, Martin
Schwarzl, Michael Schwarz, Stefan Mangard, and Daniel Gruss. 2020.
Donky: Domain Keys - Efficient In-Process Isolation for RISC-V and
x86. In Proceedings of the 29th USENIX Security Symposium (USENLX
Security’20). USENIX Association, 1677-1694.

SCI Semiconductor. 2025. ICENI Device Family.
/lwww.scisemi.com/products/iceni-device-family/
Jonathan S. Shapiro, Jonathan M. Smith, and David J. Farber. 1999.
EROS: a fast capability system. In Proceedings of the 17th ACM
Symposium on Operating Systems Principles (Charleston, South
Carolina, USA) (SOSP’99). Association for Computing Machinery,
New York, NY, USA, 170-185. doi:10.1145/319151.319163

Ayushi Sharma, Shashank Sharma, Sai Ritvik Tanksalkar, Santiago
Torres-Arias, and Aravind Machiry. 2024. Rust for Embedded Systems:
Current State and Open Problems. In Proceedings of the 31st ACM
SIGSAC Conference on Computer and Communications Security (Salt
Lake City, UT, USA) (CCS’24). Association for Computing Machinery,
New York, NY, USA, 2296-2310. doi:10.1145/3658644.3690275
Janos Sztipanovits, Xenofon Koutsoukos, Gabor Karsai, Nicholas
Kottenstette, Panos Antsaklis, Vijay Gupta, Bill Goodwine,
John Baras, and Shige Wang. 2012. Toward a Science of Cy-
ber-Physical System Integration. Proc. IEEE 100, 1 (2012), 29-44.
doi:10.1109/JPROC.2011.2161529

Xi Tan, Zheyuan Ma, Sandro Pinto, Le Guan, Ning Zhang,
Jun Xu, Zhiqiang Lin, Hongxin Hu, and Ziming Zhao. 2024.
SoK: Where’s the “up”?! A Comprehensive (bottom-up) Study
on the Security of Arm Cortex-M Systems. In Proceedings of
the 18th USENIX WOOT Conference on Offensive Technologies

https:

https://2025.splashcon.org/details/OOPSLA/204/An-Empirical-Study-of-Bugs-in-the-rustc-Compiler
https://2025.splashcon.org/details/OOPSLA/204/An-Empirical-Study-of-Bugs-in-the-rustc-Compiler
https://github.com/lowRISC/ibex
https://github.com/lowRISC/ibex
https://www.theregister.com/2024/12/13/iran_cyberweapon_us_attacks/
https://www.theregister.com/2024/12/13/iran_cyberweapon_us_attacks/
https://doi.org/10.1109/TPDS.2004.8
https://github.com/Microsoft/ms-tpm-20-ref/
http://jhir.library.jhu.edu/handle/1774.2/873
https://google-code-archive-downloads.storage.googleapis.com/v2/code.google.com/google-caja/caja-spec-2008-06-06.pdf
https://google-code-archive-downloads.storage.googleapis.com/v2/code.google.com/google-caja/caja-spec-2008-06-06.pdf
https://google-code-archive-downloads.storage.googleapis.com/v2/code.google.com/google-caja/caja-spec-2008-06-06.pdf
https://doi.org/10.1145/361932.361937
https://doi.org/10.7551/mitpress/11636.003.0009
https://www.wired.com/story/panasonic-iot-malware-honeypots/
https://www.wired.com/story/panasonic-iot-malware-honeypots/
https://www.gnustep.org/resources/OpenStepSpec.pdf.gz
https://doi.org/10.1109/SP40000.2020.00055
https://www.nokia.com/asset/214202
https://www.nokia.com/asset/214202
https://www.openpolicyagent.org/docs/v1.2.0/policy-language/
https://doi.org/10.1109/RTAS54340.2022.00015
https://www.techrepublic.com/article/zscaler-2024-mobile-iot-ot-cyber-threat-report/
https://www.techrepublic.com/article/zscaler-2024-mobile-iot-ot-cyber-threat-report/
https://doi.org/10.1109/RTAS.2019.00032
https://arxiv.org/abs/2502.04738
https://arxiv.org/abs/2502.04738
https://www.bearssl.org/
https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf
https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf
https://doi.org/10.1109/SP40000.2020.00036
https://doi.org/10.1145/3471621.3471839
https://www.nytimes.com/2024/02/21/us/politics/cybersecurity-ports.html
https://www.nytimes.com/2024/02/21/us/politics/cybersecurity-ports.html
https://doi.org/10.1109/PROC.1975.9939
https://www.nytimes.com/2024/09/23/us/politics/chinese-software-ban-cars-biden.html
https://www.nytimes.com/2024/09/23/us/politics/chinese-software-ban-cars-biden.html
https://www.scisemi.com/products/iceni-device-family/
https://www.scisemi.com/products/iceni-device-family/
https://doi.org/10.1145/319151.319163
https://doi.org/10.1145/3658644.3690275
https://doi.org/10.1109/JPROC.2011.2161529

SOSP 25, October 13-16, 2025, Seoul, Republic of Korea

[93

=

[94

flan)

(95]

[96]

[97]

(98]

[99]

[100]

[101]

[102]

[103]

[104]

(WOOT’24). USENIX Association, Philadelphia, PA, 149-169.
https://www.usenix.org/conference/woot24/presentation/tan

The Standard Performance Evaluation Corporation (SPEC). 2025.
The CoreMark Benchmark. https://www.eembc.org/coremark/.
Accessed 2025-03-04.

Jennifer Pattison Tuohy. 2025. Here’s why your smart fridge
needs an expiration date. https://www.theverge.com/smart-
home/607470/smart-appliances-expiration-date-security-updates-
consumer-reports-survey. Accessed 2025-04-10.

United States Government Accountability Office. 2024. Improve-
ments Needed in Addressing Risks to Operational Technology. https:
//www.gao.gov/assets/gao-24-106576.pdf. Accessed 2024-12-12.
US Cybersecurity and Infrastructure Security Agency. 2023. The Case
for Memory Safe Roadmaps. https://www.cisa.gov/sites/default/
files/2023-12/The-Case-for-Memory-Safe-Roadmaps-508c.pdf.
Accessed 2025-03-04.

Steven J. Vaughan-Nichols. 2024. The S in IoT stands for security.
You’ll never secure all the Things: All too many ’smart’ devices
are security stupid. https://www.theregister.com/2024/03/09/
opinion_column_security_sjvn/. Accessed 2025-03-04.

Robert N. M. Watson, Peter G. Neumann, Jonathan Woodruff,
Michael Roe, Hesham Almatary, Jonathan Anderson, John Baldwin,
Graeme Barnes, David Chisnall, Jessica Clarke, Brooks Davis,
Lee Eisen, Nathaniel Wesley Filardo, Richard Grisenthwaite,
Alexandre Joannou, Ben Laurie, A. Theodore Markettos, Simon W.
Moore, Steven J. Murdoch, Kyndylan Nienhuis, Robert Norton,
Alexander Richardson, Peter Rugg, Peter Sewell, Stacey Son, and
Hongyan Xia. 2023. Capability Hardware Enhanced RISC Instructions:
CHERI Instruction-Set Architecture (Version 9). Technical Report
UCAM-CL-TR-987. University of Cambridge, Computer Laboratory.
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-987.pdf
Robert N. M. Watson, Jonathan Woodruff, Peter G. Neumann,
Simon W. Moore, Jonathan Anderson, David Chisnall, Nirav Dave,
Brooks Davis, Khilan Gudka, Ben Laurie, Steven J. Murdoch, Robert
Norton, Michael Roe, Stacey Son, and Munraj Vadera. 2015. CHERI:
A hybrid capability-system architecture for scalable software
compartmentalization. In Proceedings of the 2015 IEEE Symposium
on Security and Privacy (S&P’15). IEEE, 20-37. doi:10.1109/SP.2015.9
M. V. Wilkes and R. M. Needham. 1979. The Cam-
bridge CAP Computer and Its Operating System. Elsevier.
https://www.cl.cam.ac.uk/events/50+5/assets/pdf/cap.pdf
Jonathan Woodruff, Robert N. M. Watson, David Chisnall, Simon W.
Moore, Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G.
Neumann, Robert Norton, and Michael Roe. 2014. The CHERI
capability model: Revisiting RISC in an age of risk. In Proceedings of
the 41st International Symposium on Computer Architecture (ISCA’14).
IEEE Press, 457-468. doi:10.1145/2678373.2665740

W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson,
and F. Pollack. 1974. HYDRA: The Kernel of a Multiprocessor
Operating System. Commun. ACM 17, 6 (jun 1974), 337-345.
doi:10.1145/355616.364017

Hongyan Xia, Jonathan Woodruff, Sam Ainsworth, Nathaniel W.
Filardo, Michael Roe, Alexander Richardson, Peter Rugg, Peter G.
Neumann, Simon W. Moore, Robert N. M. Watson, and Timothy M.
Jones. 2019. CHERIvoke: Characterising Pointer Revocation Using
CHERI Capabilities for Temporal Memory Safety. In Proceedings of
the 52nd IEEE/ACM International Symposium on Microarchitecture
(MICRO’19). Columbus, Ohio, USA. doi:10.1145/3352460.3358288
Hongyan Xia, Jonathan Woodruff, Hadrien Barral, Lawrence
Esswood, Alexandre Joannou, Robert Kovacsics, David Chisnall,
Michael Roe, Brooks Davis, Edward Napierala, John Baldwin,
Khilan Gudka, Peter G. Neumann, Alexander Richardson, Simon W.
Moore, and Robert N. M. Watson. 2018. CheriRTOS: A Capability
Model for Embedded Devices. In Proceedings of the 36th IEEE

84

[105

[106

[107

[108

[109

=

=

—

=

[

Amar et al.

International Conference on Computer Design (Orlando, FL, USA,
2018-10) (ICCD’18). IEEE, 92-99. doi:10.1109/ICCD.2018.00023
Nikita Yadav, Franziska Vollmer, Ahmad-Reza Sadeghi, Georgios
Smaragdakis, and Alexios Voulimeneas. 2024. Orbital Shield:
Rethinking Satellite Security in the Commercial Off-the-Shelf
Era. In Proceedings of the 2024 Security for Space Systems (35°24).
d0i:10.23919/3560530.2024.10592292

Xi Yang, Stephen M. Blackburn, Daniel Frampton, Jennifer B. Sartor,
and Kathryn S. McKinley. 2011. Why nothing matters: the impact
of zeroing. In Proceedings of the 26th ACM International Conference
on Object Oriented Programming Systems Languages and Applications
(Portland, Oregon, USA) (OOPSLA’11). Association for Computing Ma-
chinery, New York, NY, USA, 307-324. doi:10.1145/2048066.2048092
Yanan Zhang, Yuqiao Ning, Chao Ma, Longhai Yu, and Zhen Guo. 2023.
Empirical Study for Open Source Libraries in Automotive Software
Systems. IEEE Access 11 (2023). doi:10.1109/ACCESS.2023.3324402
Binbin Zhao, Shouling Ji, Jiacheng Xu, Yuan Tian, Qiuyang Wei,
Qinying Wang, Chenyang Lyu, Xuhong Zhang, Changting Lin,
Jingzheng Wu, and Raheem Beyah. 2022. A Large-Scale Empirical
Analysis of the Vulnerabilities Introduced by Third-Party Com-
ponents in IoT Firmware. In Proceedings of the 31st ACM SIGSOFT
International Symposium on Software Testing and Analysis (Virtual,
South Korea) (ISSTA’22). Association for Computing Machinery, New
York, NY, USA, 442-454. doi:10.1145/3533767.3534366

Xia Zhou, Jiagi Li, Wenlong Zhang, Yajin Zhou, Wenbo Shen,
and Kui Ren. 2022. OPEC: operation-based security isolation for
bare-metal embedded systems. In Proceedings of the 17th European
Conference on Computer Systems (Rennes, France) (EuroSys’22).
Association for Computing Machinery, New York, NY, USA, 317-333.
doi:10.1145/3492321.3519573

https://www.usenix.org/conference/woot24/presentation/tan
https://www.eembc.org/coremark/
https://www.theverge.com/smart-home/607470/smart-appliances-expiration-date-security-updates-consumer-reports-survey
https://www.theverge.com/smart-home/607470/smart-appliances-expiration-date-security-updates-consumer-reports-survey
https://www.theverge.com/smart-home/607470/smart-appliances-expiration-date-security-updates-consumer-reports-survey
https://www.gao.gov/assets/gao-24-106576.pdf
https://www.gao.gov/assets/gao-24-106576.pdf
https://www.cisa.gov/sites/default/files/2023-12/The-Case-for-Memory-Safe-Roadmaps-508c.pdf
https://www.cisa.gov/sites/default/files/2023-12/The-Case-for-Memory-Safe-Roadmaps-508c.pdf
https://www.theregister.com/2024/03/09/opinion_column_security_sjvn/
https://www.theregister.com/2024/03/09/opinion_column_security_sjvn/
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-987.pdf
https://doi.org/10.1109/SP.2015.9
https://www.cl.cam.ac.uk/events/50+5/assets/pdf/cap.pdf
https://doi.org/10.1145/2678373.2665740
https://doi.org/10.1145/355616.364017
https://doi.org/10.1145/3352460.3358288
https://doi.org/10.1109/ICCD.2018.00023
https://doi.org/10.23919/3S60530.2024.10592292
https://doi.org/10.1145/2048066.2048092
https://doi.org/10.1109/ACCESS.2023.3324402
https://doi.org/10.1145/3533767.3534366
https://doi.org/10.1145/3492321.3519573

	Abstract
	1 Introduction
	2 CHERIoT: Hardware-Software Co-Design
	2.1 The CHERIoT ISA and Hardware Platform
	2.2 Co-Designing an OS with the CHERIoT hardware

	3 Design of the CHERIoT RTOS
	3.1 OS Architecture Overview
	3.2 CHERIoT RTOS Programming Model and APIs

	4 Auditing CHERIoT RTOS Images
	5 Evaluation
	5.1 Security Evaluation
	5.2 Source-Compatibility Evaluation
	5.3 Memory Usage and Performance Evaluation

	6 Related Works
	7 Concluding Remarks
	References

